PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody usuwania trwałych zanieczyszczeń organicznych z osadów dennych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Methods for removal of persistent organic pollutants from bottom sediments
Języki publikacji
PL
Abstrakty
PL
Praca zawiera przegląd literatury na temat metod usuwania zanieczyszczeń organicznych z wydobytych osadów dennych. Wśród tych technologii wyróżnia się metody fizyczne, chemiczne, termiczne, biologiczne oraz łączone. Do oczyszczania wydobytych osadów dennych najczęściej stosuje się metody biologiczne. Wymagają one jednak długiego czasu prowadzenia procesu i często toksyczność usuwanych substancji oraz ich ubocznych produktów rozkładu przyczynia się do zahamowania biodegradacji. W tym celu należy poszukiwać nowych, lepszych rozwiązań. W ostatnich latach coraz bardziej popularne są procesy z wykorzystaniem pola ultradźwiękowego oraz odczynnika Fentona, które wpisują się w zasady zielonej chemii. Ponadto metody te można prowadzić w układach łączonych, które zazwyczaj pozwalają na uzyskanie wyższego stopnia degradacji zanieczyszczeń organicznych w porównaniu z procesami pojedynczymi.
EN
The work contains a review of the literature on the methods of removing organic pollutants from dredged bottom sediments. These technologies include physical, chemical, thermal, biological and combined methods. The biological methods are most often used for the treatment of dredged bottom sediments. However, they require a long process time and often the toxicity of the removed substances and their by-products of decomposition contributes to the inhibition of biodegradation. For this purpose, new and better solutions are sought. In recent years, processes using the ultrasonic field and the Fenton reagent, which are part of the principles of green chemistry, are becoming more and more popular. In addition, these methods can be carried out in combined systems, which usually allow a higher degree of degradation of organic contaminants compared to single processes.
Czasopismo
Rocznik
Tom
Strony
49--55
Opis fizyczny
Bibliogr. 70 poz., rys., wzory
Twórcy
  • Politechnika Rzeszowska, Wydział Budownictwa, Inżynierii Środowiska i Architektury, Zakład Inżynierii i Chemii Środowiska
  • Politechnika Rzeszowska, Wydział Budownictwa, Inżynierii Środowiska i Architektury, Zakład Inżynierii i Chemii Środowiska
  • Politechnika Rzeszowska, Wydział Budownictwa, Inżynierii Środowiska i Architektury, Zakład Inżynierii i Chemii Środowiska
Bibliografia
  • [1] Acharya P., Ives P. (1994). Incineration at Bayou Bounfouca remediation project. Waste Management, 14 (1), 13-26.
  • [2] Adewuyi Y. G. (2001). Sonochemistry: environmental science and engineering applications, Industrial & Engineering Chemistry Research, 40 (22), 4681-4715.
  • [3] Agarwal A., Liu Y. (2015). Remediation technologies for oil-contaminated sediments. Marine pollution bulletin, 101 (2), 483-490.
  • [4] Akcil A., Erust C., Ozdemiroglu S., Fonti V., Beolchini F. (2015). A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. Journal of Cleaner Production, 86, 24–36.
  • [5] Andreozzi R., Di Somma I., Marotta R., Pinto G., Pollio A., Spasiano D. (2011). Oxidation of 2, 4 dichlorophenol and 3, 4–dichlorophenol by means of Fe(III)–homogeneous photocatalysis and algal toxicity assessment of the treated solutions. Water research, 45 (5), 2038-2048.
  • [6] Anthony E. J., Wang J. (2006). Pilot plant investigations of thermal remediation of tar–contaminated soil and oil–contaminated gravel. Fuel, 85 (4), 443-450.
  • [7] Barbusiński K. (2004). Intensyfikacja procesu oczyszczania ścieków i stabilizacji osadów nadmiernych z wykorzystaniem odczynnika Fentona. Zeszyty Naukowe. Inżynieria Środowiska / Politechnika Śląska, 50, 7-169.
  • [8] Bogacki J., Naumczyk J. (2009). Fizykochemiczne metody ex-situ oczyszczania osadów dennych z metali ciężkich. Gaz, Woda i Technika Sanitarna, 11, 3-42.
  • [9] Chang H. J., Jou C. J. G., Lee C. L. (2011). Treatment of heavy oil contaminated sand by microwave energy. Environmental Engineering Science, 28 (12), 869-873.
  • [10] Cheng M., Zeng G., Huang D., Lai C., Xu P., Zhang C., Liu Y. (2016b). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chemical Engineering Journal, 284, 582-598.
  • [11] Chu K. H., Al-Hamadani Y. A., Park C. M., Lee G., Jang M., Jang A., ... & Yoon Y. (2017). Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: a review. Chemical Engineering Journal, 327, 629–647.
  • [12] Collings A. F., Farmer A. D., Gwan P. B., Pintos A. S., Leo C. J. (2006). Processing contaminated soils and sediments by high power ultrasound. Minerals engineering, 19 (5), 450–453.
  • [13] Dahrazma B., Mulligan C. N. (2007). Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere, 69 (5), 705–711.
  • [14] Deveci H., Alp I., Uslu T. (2007). Generation of hydrogen peroxide and removal of cyanide from solutions using ultrasonic waves. Desalination, 216 (1-3), 209-221.
  • [15] European Patent Office (2014), ep.espacenet.com.
  • [16] Falciglia P. P., Malarbi D., Maddalena R., Greco V., Vagliasindi F. G. (2017). Remediation of Hg - contaminated marine sediments by simultaneous application of enhancing agents and microwave heating (MWH). Chemical Engineering Journal, 321, 1-10.
  • [17] Falciglia P. P., Vagliasindi F. G. A. (2014). Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: technical, energy and economic considerations. Environmental technology, 35 (18), 2280-2288.
  • [18] Ferrarese E., Andreottola G., Oprea I. A. (2008). Remediation of PAH-contaminated sediments by chemical oxidation. Journal of Hazardous Materials, 152 (1), 128-139.
  • [19] Gan S., Ng H. K. (2012a). Modified Fenton oxidation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils and the potential of bioremediation as post–treatment. Science of the Total Environment, 419, 240-249.
  • [20] Gao J., Chen B. Q. (2008). Effects of PAEs on soil microbial activity and catalase activity. Journal of Soil and Water Conservation, 22, 166-169.
  • [21] Im, J. K., Heo, J., Boateng, L. K., Her, N., Flora, J. R., Yoon, J., ... & Yoon, Y. (2013). Ultrasonic degradation of acetaminophen and naproxen in the presence of single-walled carbon nanotubes. Journal of hazardous materials, 254, 284-292.
  • [22] ITRC (The Interstate Technology and Regulatory Council) (2005). Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater, second ed. ISCO. 2. Interstate Technology Council, In Situ Chemical Oxidation Team, Washington, DC. <http://www.itcweb.org>.
  • [23] Jonsson S., Persson Y., Frankki S., van Bavel B., Lundstedt S., Haglund P., Tysklind, M. (2007). Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton’s reagent: a multivariate evaluation of the importance of soil characteristics and PAH properties. Journal of hazardous materials, 149(1), 86-96.
  • [24] Jorfi S., Rezaee A., Moheb–ali G. A., alah Jaafarzadeh N. (2013). Pyrene removal from contaminated soils by modified Fenton oxidation using iron nanoparticles. Journal of Environmental Health Science and Engineering, 11(1), 17.
  • [25] Kwarciak–Kozłowska A., Krzywicka A. (2015). Effect of ultrasonic field to increase the biodegradability of coke processing wastewater. Archives of Waste Management and Environmental Protection, 17(3), 133-142.
  • [26] Lewis S., Lynch A., Bachas L., Hampson S., Ormsbee L., & Bhattacharyya D. (2009). Chelate – modified Fenton reaction for the degradation of trichloroethylene in aqueous and two-phase systems. Environmental Engineering Science, 26 (4), 849–859.
  • [27] Li D., Zhang Y., Quan X., Zhao Y. (2009). Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber. Journal of Environmental Sciences, 21 (9), 1290-1295.
  • [28] Lim M. W., Von Lau E., Poh P. E. (2016). A comprehensive guide of remediation technologies for oil contaminated soil-present works and future directions. Marine pollution bulletin, 109 (1), 14-45.
  • [29] Margesin R., Hammerle M., Tscherko D. (2007). Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Microbial Ecology, 53 (2), 259-269.
  • [30] Mason T. J., Collings A., Sumel, A. (2004). Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrasonics Sonochemistry, 11 (3–4), 205-210.
  • [31] McGoldrick D. J., Pelletier M., de Solla S. R., Marvin C. H., Martin P. A. (2018). Legacy of legacies: Chlorinated naphthalenes in Lake Trout, Walleye, Herring Gull eggs and sediments from the Laurentian Great Lakes indicate possible resuspension during contaminated sediment remediation. Science of The Total Environment, 634, 1424-1434.
  • [32] Mena E., Villasenor J., Canizares P., Rodrigo M. A. (2014). Effect of a direct electric current on the activity of a hydrocarbon-degrading microorganism culture used as the flushing liquid in soil remediation processes. Separation and Purification Technology, 124, 217-223.
  • [33] Miller C. M., Valentine R. L., Roehl M. E., Alvarez P. J. (1996). Chemical and microbiological assessment of pendimethalin-contaminated soil after treatment with Fenton’s reagent. Water Research, 30 (11), 2579-2586.
  • [34] Miłowska K. (2007). Ultradźwięki – mechanizmy działania i zastosowanie w terapii sonodynamicznej Ultrasound–mechanisms of action and application in sonodynamic therapy. Postepy Hig Med Dosw. (online), 61, 338–349.
  • [35] Morillo E., Villaverde J. (2017). Advanced technologies for the remediation of pesticide-contaminated soils. Science of the Total Environment, 586, 576–597.
  • [36] Mulligan C. N., Yong R. N., Gibbs B. F. (2001). Heavy metal removal from sediments by biosurfactants. Journal of hazardous materials, 85 (1–2), 111-125.
  • [37] Naddeo V., Belgiorno V., Napoli R. M. (2007). Behaviour of natural organic matter during ultrasonic irradiation. Desalination, 210 (1–3), 175-182.
  • [38] Pardo F., Rosas J. M., Santos A., Romero A. (2014). Remediation of a biodiesel blend-contaminated soil by using a modified Fenton process. Environmental Science and Pollution Research, 21 (21), 12198-12207.
  • [39] Patil P. N., Gogate P. R. (2015). Degradation of dichlorvos using hybrid advanced oxidation processes based on ultrasound. Journal of Water Process Engineering, 8, 58-65.
  • [40] Petrier C. (2015). The use of power ultrasound for water treatment. In Power Ultrasonics, 939-972.
  • [41] Płaza G., Nałęcz–Jawecki, G., Ulfig K., Brigmon R. L. (2005). The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere, 59, 289-296.
  • [42] Podsiadło Ł., Krzyśko–Łupicka T. (2013). Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności. Inżynieria i Ochrona Środowiska, 16.
  • [43] Pourabadehei M., Mulligan C. N. (2016). Resuspension of sediment, a new approach for remediation of contaminated sediment. Environmental pollution, 213, 63-75.
  • [44] Rahman K. S. M., Thahira–Rahman J., Lakshmanaperumalsamy P., Banat I. M. (2002). Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresource technology, 85 (3), 257-261.
  • [45] Ramirez E. M., Jimenez C. S., Camacho J. V., Rodrigo M. A. R., Canizares P. (2015). Feasibility of coupling permeable bio-barriers and electrokinetics for the treatment of diesel hydrocarbons polluted soils. Electrochimica Acta, 181, 192-199.
  • [46] Ravikumar J. X., Gurol M. D. (1994). Chemical oxidation of chlorinated organics by hydrogen peroxide in the presence of sand. Environmental science & technology, 28 (3), 394-400.
  • [47] Reis E., Lodolo A., Miertus S. (2007). Survey of sediment remediation technologies: International Centre for Science and High Technology (ICS). Google Scholar.
  • [48] Shemer H., Narkis N. (2005). Sonochemical removal of trihalomethanes from aqueous solutions. Ultrasonics sonochemistry, 12 (6), 495-499.
  • [49] Siebielec S., Siebielec G., Smreczak B. (2015). Zanieczyszczenia osadów dennych rzek i zbiorników wodnych. Studia i Raporty IUNG-PIB, 46 (20), 163-181.
  • [50] Siedlecka E. (2014). Ekoinnowacje w technologii i organizacji przedsiębiorstw. Uniwersytet Gdański, Gdańsk.
  • [51] Silva V.L.D., Neto B.D.B., Simonnot M. O. (2009). Phenanthrene and pyrene oxidation in contaminated soils using Fenton’s reagent. J. Hazard. Mater. 161: 967-973.
  • [52] Silva-Castro G. A., Uad I., Rodriguez–Calvo A., Gonzalez–Lopez J., Calvo C. (2015). Response of autochthonous microbiota of diesel polluted soils to land–farming treatments. Environmental research, 137, 49-58.
  • [53] Tatano F., Felici F., Mangani F. (2013). Lab–scale treatability tests for the thermal desorption of hydrocarboncontaminated soils. Soil and Sediment Contamination: An International Journal, 22 (4), 433–456.
  • [54] Trellu C., Mousset E., Pechaud Y., Huguenot D., Van Hullebusch E. D., Esposito G., Oturan M. A. (2016). Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. Journal of hazardous materials, 306, 149-174.
  • [55] Tyre B. W., Watts R. J., Miller G. C. (1991). Treatment of four biorefractory contaminants in soils using catalyzed hydrogen peroxide. Journal of Environmental Quality, 20 (4), 832-838.
  • [56] Vicente F., Rosas J. M., Santos A., Romero A. (2011). Improvement soil remediation by using stabilizers and chelating agents in a Fenton-like process. Chemical Engineering Journal, 172 (2–3), 689-697.
  • [57] Vicente F., Santos A., Saguillo E. G., Martinez–Villacorta A. M., Rosas J. M., Romero A. (2012). Diuron abatement in contaminated soil using Fenton-like process. Chemical Engineering Journal, 183, 357-364.
  • [58] Wang L., Kwok J. S., Tsang D. C., Poon C. S. (2015b). Mixture design and treatment methods for recycling contaminated sediment. Journal of hazardous materials. 283, 623-632.
  • [59] Wang L., Tsang D. C., Poon C. S. (2015c). Green remediation and recycling of contaminated sediment by waste–incorporated stabilization/solidification. Chemosphere, 122, 257–264.
  • [60] Wang M., Zhu Y., Cheng L., Andserson B., Zhao X., Wang D., & Ding A. (2018). Review on utilization of biochar for metal–contaminated soil and sediment remediation. Journal of Environmental Sciences. 63, 156-173.
  • [61] Watts R. J., Dilly S. E. (1996). Evaluation of iron catalysts for the Fenton-like remediation of diesel-contaminated soils. Journal of Hazardous Materials, 51 (1–3), 209-224.
  • [62] Watts R. J., Smith B. R., Miller G. C. (1991). Catalyzed hydrogen peroxide treatment of octachlorodibenzop-oxin (OCCD) in surface soils. Chemosphere, 23 (7), 949-955.
  • [63] Watts R. J., Spencer C. J., Stanton P. C. (1994). On-site treatment of contaminated soils using catalyzed peroxide. Final report (No. PB–95-111365/XAB). Washington State Transportation Center, Pullman, WA (United States).
  • [64] Watts R. J., Udell M. D., Monsen R. M. (1993). Use of iron minerals in optimizing the peroxide treatment of contaminated soils. Water Environment Research, 65 (7), 839-844.
  • [65] Włodarczyk–Makuła, M. (2015b). Rola rodników hydroksylowych w utlenianiu mikrozanieczyszczeń organicznych. LAB Laboratoria, Aparatura, Badania, 20.
  • [66] Wu G., Zhu X., Ji H., Chen D. (2015). Molecular modeling of interactions between heavy crude oil and the soil organic matter coated quartz surface. Chemosphere, 119, 242-249.
  • [67] Xu L. J., Chu W., Graham N. (2013). A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process. Ultrasonics sonochemistry, 20 (3), 892-899.
  • [68] Yap C. L., Gan S., Ng H. K. (2011). Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere, 83 (11), 1414-1430.
  • [69] Zhao G., Sheng Y., Wang C., Yang J., Wang Q., Chen L. (2018a). In situ microbial remediation of crude oil-soaked marine sediments using zeolite carrier with a polymer coating. Marine pollution bulletin, 129 (1), 172-178.
  • [70] Zhou H., Sun Q., Wang X., Wang L., Chen J., Zhang J., Lu X. (2014). Removal of 2,4–dichlorophenol from contaminated soil by a heterogeneous ZVI/EDTA/Air Fenton-like system. Separation and Purification Technology, 132, 346-353.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f84fa8ee-349b-4272-8473-271f5b405690
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.