PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Varying Temperature on Leaf Phenology and Herbivory of Dominant Tree Species in Subtropical Evergreen Broad-Leaves Forest in Eastern China

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to analyse the response of dominant tree species to the changing climate in a subtropical evergreen broad-leaved forest in China. We investigated the main leaf phenology and herbivory parameters of four typical trees (i.e., Schima superba, Castanopsis fargesii, Castanopsis sclerophylla and Cyclobalanopsis sessilifolia) in spring from 2010 to 2014 in the Tiantong National Forest Research Station in eastern China. The results showed that the accumulated temperature was the principle factor which affected the leaf phenology and herbivory. All four trees got an earlier, shorter and more synchronised leaf expansion in years with higher accumulated temperature, and also they suffered more sever leaf damage in these years. However the trees responded differently to climate warming in leaf phenology and herbivory. The S. superba and Ca. sclerophylla were more sensitive to the varying accumulated temperature than the Ca. fargesii and Cy. sessilifolia both in leaf phenology and herbivory during leaf expansion. We suggest that the observed variations in leaf phenology and leaf traits to the changing accumulated temperature should be taken into consideration for pest management and community stability maintenance in forests adapting to the changing climate.
Rocznik
Strony
53--69
Opis fizyczny
Bibliogr. 53 poz., mapa, rys., tab., wykr.
Twórcy
autor
  • School of Life Sciences, East China Normal University, Shanghai 200241, China
  • Shanghai Key Laboratory for Urban Ecology Processes and Eco-Restoration, Shanghai 200241, China
autor
  • School of Life Sciences, East China Normal University, Shanghai 200241, China
  • Shanghai Key Laboratory for Urban Ecology Processes and Eco-Restoration, Shanghai 200241, China
autor
  • Shanghai Key Laboratory for Urban Ecology Processes and Eco-Restoration, Shanghai 200241, China
  • School of Resources and Environmental Science, East China Normal University, Shanghai 200062, China
Bibliografia
  • [1] Agrawal A. A. , Fishbein M. 2006 — Plant defense syndromes — Ecology, 87: 132–149.
  • [2] Angulo-Sandoval P. , Aide T. M. 2000 — Leaf phenology and leaf damage of saplings in the Luquillo Experimental Forest, Puerto Rico — Biotropica, 32: 415–422.
  • [3] Bazzaz F. A. , Chiariello N. R. , Coley P. D. , Pitelka L. F. 1987 — A locating resources to reproduction and defenses — Bioscience, 37: 57–58.
  • [4] Berenbaum M. R. 2001 — Chemical mediation of coevolution: phylogenetic evidence for Apiaceae and associates — Ann. Mo. Bot. Gard. 88: 45–59.
  • [5] Borchert R. , Robertson K. , Schwartz M. D. , William-Linera G. 2005 — Phenology of temperate trees in tropical climate — Int. J. Biometeorol. 50: 57–65.
  • [6] Cai Z. Q. , Cao K. F. 2002 — Advances in the studies on anti-herbivore defenses of tropical forest plant young leaves — Guihaia, 22: 474–480 (in Chinese, English summary).
  • [7] Coley P. D. , Aide T. M. 1991 — Comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests (In: Plant-animal interactions; evolutionary ecology in tropical and temperate regions, Eds: P. W. Price , T. M. Lewinsohn , G. W. Fernandes , W. W. Benson ) John Wiley and Sons, Inc. New York, pp. 18–26.
  • [8] Coley P. D. , Barone J. A. 1996 — Herbivory and plant defenses in tropical forests — Annu. Rev. Ecol. Syst. 27: 305–335.
  • [9] Coley P. D. , Kursar T. A. 1996 — Anti-herbivore defenses of young tropical leaves: physiological constrains and ecological tradeoffs — Chapman & Hall, New York, pp. 30–37.
  • [10] Craine J. 2009 — Resource strategies of wild plants — Princeton University Press, Princeton, pp. 57–65.
  • [11] Dardeau F. , Pointeau S. , Ameline A. , Laurans F. , Cherqui A. , Lieutier F., Salle A. 2014 — Host manipulation by a herbivore optimizes its feeding behavior — Anim. Behav. 95: 49–56.
  • [12] Feeny P. P. 1970 — Seasonal changes in Oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars — Ecology, 51: 565–581.
  • [13] Foster J. R. , Townsend P. A. , Mladenoff D. J. 2013 — Mapping asynchrony between gypsy moth egg-hatch and forest leaf-out: Putting the phenological window hypothesis in a spatial context — Forest Ecol. Manag. 287: 67–76.
  • [14] Futuyma D. J. 2000 — Some current approaches to the evolution of plant herbivore interactions — Plant Spec. Biol. 15: 1–9.
  • [15] Hanley M. E. , Lamont B. B. , Fairbanks M. M. , Rafferty C. M. 2007 — Plant structural traits and their role in anti-herbivore defence — Perspect. Plant Ecol. 8: 157–178.
  • [16] Herms D. A. , Mattson W. J. 1992 — The dilemma of plants: to grow or defend — Q. Rev. Biol. 67: 283–335.
  • [17] IPCC 2013 — Climate Change 2013: The physical Science Basis (In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Eds: S. Solomon , D. Qin , M. Manning , Z. Chen , M. Marquis , K. B. Averyt , M. Tignor & H. L. Miller ) — Cambridge University Press. Cambridge, United Kingdom and New York NY, USA.
  • [18] Jabłońska K. , Kwiatkowska-Falińska A. , Czarnecki B. , Walawander J. P. 2015 — Changes in spring and summer phenology in Poland — responses of selected plant species to air temperature variation — Pol. J. Ecol. 63: 311–320.
  • [19] Jing J. , Su C. , Fang Y. , Li K. 2014 — Effects of temperature on fecundity of nine lepidopteran species in Tiantong National Forest Park, Zhejiang Province, China — Chinese Journal of Applied Ecology, 25: 819–824 (in Chinese, English summary).
  • [20] Jones C. G. , Hartley S. E. 1999 — A protein competition model of phenolic allocation — Oikos, 86: 27–44.
  • [21] Kardol P. , Campany C. E. , Souza L , Norby R. J. , Weltzin J. F , Classen A. T. 2010 — Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem — Global Change Biol. 16: 2676–2687.
  • [22] Kergoat G. J. , Prowell D. P. , Ru B. P. L. , Mitchell A. , Dumas P. , Clamens A. L. , Condamine F. L. , Silvain J. F. 2012 — Disentangling dispersal, vicariance and adaptive radiation patterns: A case study using armyworms in the pest genus Spodoptera (Lepidoptera: Noctuidae) — Mol. Phylogenet. Evol. 64: 855–870.
  • [23] Kursar T. A. , Coley P. D. 2003 — Convergence in defense syndromes of young leaves in tropical rainforests — Biochem. Syst. Ecol. 31: 929–949.
  • [24] Kursar T. A. , Coley P. D. , Corley D. G. , Gupta M. B. , Harrison L. A. , Ortega-Barrıa E. , Windsor D. M. 1999 — Ecologically guided bioprospecting in Panama — Pharm. Biol. 37: 114–126.
  • [25] Lei T. T. , Koike T. 1998 — Some obervations of phenology and ecophysiology of Daphne kamtschatica Maxim. var. jezoensis (Maxim. ) Ohwi, a shade deciduous shrub, in the forest of northern Japan — Plant Res. 111: 207–212.
  • [26] Liu Z. G. , Cai Y. L. , Li K. 2010 — Effects of simulated herbivory on leaf quality and subsequent insect attack during leaf expansion in Schima superba (Theaceae) in subtropical China — Phyton-int. J. Exp. Bot. 79: 81–86.
  • [27] Lockhart J. A. 1983 — Optimum growth initiation time for shoot buds of deciduous plants in a temperate climate — Oecologia, 60: 34–37.
  • [28] Marquis R. J. 1984 — Leaf herbivores decrease fitness of a tropical plant — Science, 226: 537–539.
  • [29] Menzel A. 2002 — Phenology: Its importance to the global change community — Climatic change, 54: 379–385.
  • [30] Moles A. T. , Westoby M. 2000 — Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage — Oikos, 90: 517–524.
  • [31] Murali K. S. , Sukumar R. 1993 — Leaf flushing phenology and herbivory in a tropical dry deciduous forest, southern India — Oecologia, 94: 114–119.
  • [32] Paus E. , Nilsen J. , Junttila O. 1986 — Bud dormancy and vegetable growth in Salix polaris as affected by temperate and photoperiod — Polar Biol. 6: 91–95.
  • [33] Peters K. , Breitsameter L. , Gerowitt B. 2014 — Impact of climate change on weeds in agriculture: a review — Agron. Sustain. Dev. 34: 707–721.
  • [34] Pop E. W. , Oberbauer S. F. , Starr G. 2000 — Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana — Oecologia, 124: 176–184.
  • [35] Radchuk V. , Johst K. , Groeneveld J. , Grimm V. , Schtickzelle N. 2013 — Behind the scenes of population viability modeling: Predicting butterfly metapopulation dynamics under climate change — Ecol. Model. 259: 62–73.
  • [36] Sarah L. F. , David S. E. , Joanna T. S. , Denis J. W. , Scott N. J. 2014 — Upsetting the order: how climate and atmospheric change affects herbivore-enemy interactions — Insect Sci. 5: 66–74.
  • [37] Schupp E. W. , Feener D. H. 1991 — Phylogeny, life form and habitat dependence of ant-defended plants in a Panamanian forest — Oxford University Press, Oxford, pp. 175–197.
  • [38] Shi P. J. , Zhong L. , Sandhu H. S. , Ge F. , Xu X. M. , Chen W. 2012 — Population decrease of Scirpophaga incertulas Walker (Lepidoptera Pyralidae) under climate warming — Ecol. Evol. 2: 58– 64.
  • [39] Singh J. S. , Singh V. K. 1992 — Phenology of seasonally dry tropical forest — Current Science, 63: 684–689.
  • [40] Song Y. C. , Chen X. Y. 1995 — Degradation mechanism and ecological restoration of evergreen broad-leaved forest ecosystem in east China — Science Press, Beijing, pp. 22–25.
  • [41] Stapley L. 1998 — The interaction of thorns and symbiotic ants as an effective defence mechanism of swollen-thorn acacias — Oecologia, 115: 401–405.
  • [42] Sun C. , Cai Y. L. , Liu Z. G. , Yang L. 2010 — Leaf growth of Castanopsis fargesii in evergreen broad-leaved forest in Tiantong National Forest Park of Zhejiang, China — Journal of Ecology and Rural Environment, 26: 215–219 (in Chinese, English summary).
  • [43] Thompson J. N. 1999 — The evolution of species interactions — Science, 284: 2116–2118.
  • [44] Tian Y. P. 2007 — Study on growth and development of plant in subtropical evergreen broad-leaved forest. East China Normal University, Shanghai (in Chinese, English summary).
  • [45] Vitasse Y. , Delzon S. , Dufrêne E. , Pontailler J. Y. , Louvet J. M. , Kremer A. , Michalet R. 2008 — Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? — Agr. Forest Meteorol. 149: 735–44.
  • [46] Wang H. W. , Cai Y. L. , Li K. , Jiang H. , Tian Y. P. 2006 — Insect herbivory patterns on leaves of 11 plant species in the evergreen broad-leaved forests of Tiantong National Forest Park, Zhejiang — Biodiversity Science, 14: 145–151 (in Chinese, English summary).
  • [47] Yamanaka T. , Tatsuki S. , Shimada M. 2008 — Adaptation to the new land or effect of global warming? An age-structured model for rapid voltinism change in an alien lepidopteran pest — J. Anim. Ecol. 77: 585–596.
  • [48] Yamazaki K. , Lev-Yadun S. 2015 — Dense white trichome production by plants as possible mimicry of arthropod silk or fungal hyphae that deter herbivory — J. Theor. Biol. 364: 1–6.
  • [49] Yang L. , Cai Y. L. , Liu Z. G. , Sun C. 2009 — The budburst phenology research of evergreen broad-leaves forest in Zhejiang Tiantong — Journal of Central South University of Forest & Technology, 29: 38–44 (in Chinese, English summary).
  • [50] Yoshie F. , Fukuda T. 1994 — Effects of growth temperature and winter duration on leaf phenology of Erythronium japonicum, a forest spring geophyte — Oecologia, 97: 366–368.
  • [51] Yu X. D. , Zhou H. Z. , Luo T. H. 2001 — Patterns of damage by phytophagous insects on leaves of Quercus liaotungensis — Acta Phytoecologica Sinica, 25: 553–560 (in Chinese, English summary).
  • [52] Yuan H. E. , Yan S. C. , Tong L. L. , Gao L. L. , Wang Y. J. 2009 — Content differences of condensed tannin in needles of Larix gmelinii by cutting needles and insect feeding — Acta Ecologica Sinica, 29: 1415–1420 (in Chinese, English summary).
  • [53] Zheng Z. , Chen X. D. , Mao H. W. , Zheng Q. , Yu F. 2001 — Leaf growth and herbivory dynamics of saplings tropical seasonal rainforest in Xishuangbanna — Acta Phytoecologica Sinica, 25: 679–686 (in Chinese, English summary).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f84f4988-4e44-4af9-b32a-936220f3dc4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.