PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

How many extensional stages marked the Variscan gravitational collapse in the Bohemian Massif?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tectonic development of the Variscan belt in Central Europe included, besides important compression, also an extensional phase related to gravitational collapse, which governed the origin of many sedimentary basins and magmatic bodies. One of these bodies is the Benešov pluton, featuring primary magmatic fabrics as well as deformational fabrics, related to subsequent extensional stages. Recognition of these fabrics and their links to other significant extension-induced structures in the Bohemicum and Moldanubicum not only sheds new light on the pluton itself but also extends a general knowledge of deformational stages, accompanying gravitational collapse of the Variscan orogen. The authors found that this pluton was strongly strained in a normal-faulting regime under brittle-ductile conditions. The age of deformation is constrained by a magmatic age of 347 ±3 Ma and by the age of Carboniferous sedimentary cover. New data indicate a three-stage extensional history during the phase of gravitational collapse: (1) Tournaisian extension (~350–345 Ma) within arc-related tonalitic intrusions; (2) late Viséan to Serpukhovian extension (~332–320 Ma), connected to the brittle-ductile unroofing and origin of a NE–SW basin system; and (3) Gzhelian to Cisuralian extension (~303–280 Ma), related to normal faulting and sedimentation in “Permo-Carboniferous” troughs, elongated NNE–SSW. Consequently, the gravitational collapse studied involved a complex succession of individual extensional stages, rather than a simple process.
Rocznik
Strony
121--136
Opis fizyczny
Bibliogr. 68 poz., fot., rys., tab., wykr.
Twórcy
  • Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
  • Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
autor
  • Institute of Geology, Czech Academy of Sciences, 165 00 Praha 6, Czech Republic
Bibliografia
  • 1. Borradaile, J. G. & Henry, B., 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews, 42: 49-93.
  • 2. Bouchez, J-L., 1997. Granite is never isotropic: An introduction to AMS studies in granitic rocks. In: Bouchez, J. L., Hutton, D. H. W. & Stephens, W. E. (eds), Granite: from Segregation of Melt to Emplacement Fabrics. Kluwer Academic, Dordrecht, pp. 95-112.
  • 3. Bouchez, J-L., 2000. Anisotropie de susceptibilité magnétique et fabrique des granites. Comptes Rendus de l'Académie des Sciences, Series IIA, Earth and Planetary Science, 330: 1-14.
  • 4. Bouchez, J-L., Gleizes, G., Djouadi, T. & Rochette, P., 1990. Microstructure and magnetic susceptibility applied to emplacement kinematics of granites: The example of the Foix pluton (French Pyrenees). Tectonophysics, 184: 157-171.
  • 5. Čech, V., Havlíček, V & Zikmundová, J., 1989. The Upper Devonian and Lower Carboniferous in northeastern Bohemia (based on boreholes in the Hradec Králové area). Věstnik Ústředního ústavu geologického, 64: 65-75.
  • 6. Chadima, M. & Jelínek, V., 2008. Anisoft 4.2 - anisotropy data browser. Comtributioms to Geophysics and Geodesy, 38 (Special Issue), p. 41.
  • 7. Chlupáč, I. & Zikmundová, J., 1976. The Devonian and Lower Carboniferous in the Nepasice bore in East Bohemia. Věstmk Ústředmího ústavu geologického, 51: 269-278.
  • 8. Dragoun, F., Holub, F., Chlupáčová, M., Kachlík, V, Verner, K. & Žák, J., 2009. Forearc deformation and strain partitioning during growth of a continental magmatic arc: The northwestern margin of the Central Bohemian Plutonic Complex, Bohemian Massif. Tectonophysics, 469: 93-111.
  • 9. Edel, J. B., Schulmann, K., Lexa, O. & Lardeaux, J. M., 2018. Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth-Science Reviews, 177: 589-612.
  • 10. Falke, H. (ed.), 1975. The Continental Permian in Central, West, and South Europe. Proceedings of the NATO Advanced Study Institute held at the Johannes Gutenberg University, Mainz, F.R.G., 23 September - 4 October, 1975. D. Reidel Publishing Company, Dordrecht, Holland / Boston, U.S.A., 352 pp.
  • 11. Franke, W., 1992. Phanerozoic structures and events in Central Europe. In: Blundel, D., Freeman, R. & Mueller, S. (eds), A Continent Revealed. The European Geotraverse. Cambridge University Press, Cambridge, pp. 160-180.
  • 12. Franke, W., 2000. The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke, W., Haak, V., Oncken, O. & Tanner, D. (eds), Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society, London, Special Publications, 179: 35-61.
  • 13. Graham, J. W., 1954. Magnetic susceptibility anisotropy, an unexploited petrofabric element. Geological Society of America Bulletin, 65: 1257-1258.
  • 14. Henk, A., 1996. Gravitational orogenic collapse vs plate-boundary stresses: a numerical modelling approach to the Permo-Carboniferous evolution of Central Europe. Geologische Rundschau, 86: 39-55.
  • 15. Holub, F., Cocherie, A. & Rossi, P., 1997a. Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian-Barrandian boundary. Comptes Rendus de l'Académie des Sciences, Series IIA, Earth and Planetary Science, 325: 19-26.
  • 16. Holub, F. V., Machart, J. & Manová, M., 1997b. The Central Bohemian Plutonic Complex: geology, chemical composition and genetic interpretation. Sborník geologickych věd, Ložisková geologie, 31: 27-50.
  • 17. Hoskin, P. W. O. & Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53: 27-62.
  • 18. Hrouda, F., 1994. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophysical Journal International, 118: 604-612.
  • 19. Hrouda, F., 1999. Magnetic fabric in granitic rocks: its intrusive origin and post-intrusive tectonic modification. Geolines, 8: 29.
  • 20. Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211: 47-69.
  • 21. Jadamec, M. A., Turcotte, D. L. & Howell, P., 2007. Analytic models for orogenic collapse. Tectonophysics, 435: 1-12.
  • 22. Janousek, V., Bowes, D., Rogers, G., Farrow, C. M. & Jelínek, E., 2000. Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. Journal of Petrology, 41: 511-543.
  • 23. Janousek, V. & Gerdes, A., 2003. Timing the magmatic activity within the Central Bohemian Pluton, Czech Republic: Conventional U-Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. Journal of the Czech Geological Society, 48: 70-71.
  • 24. Jelínek, V., 1981. Characterization of the magmatic fabric of rocks. Tectonophysics, 79: T63-T67.
  • 25. Jelínek, V & Pokorny, J., 1997. Some new concepts in technology of transformer bridges for measuring susceptibility anisotropy of rocks. Physics and Chemistry of the Earth, 22: 179-181.
  • 26. Jokubauskas, P., Bagiński, B., Macdonald, R. & Krzemińska, E., 2018. Multiphase magmatic activity in the Variscan Kłodzko-Złoty Stok intrusion, Polish Sudetes: evidence from SHRIMP U-Pb zircon ages. International Journal of Earth Sciences, 107: 1623-1639.
  • 27. Klomínsky, J., Jarchovsky, T. & Rajpoot, G., 2010. Atlas of Plutonic Rocks and Orthogneisses in the Bohemian Massif. Czech Geological Survey, Praha, 613 pp.
  • 28. Koutek, J. & Urban, K., 1929. Note sur terrain granitique à l'Est de Benešov dans la Bohême centrale. Věstnik Státního geologického ústavu Československé republiky, 15: 131-137. [In Czech, with French summary.]
  • 29. Kroner, U. & Romer, R. L., 2013. Two plates - Many subduction zones: The Variscan orogeny reconsidered. Gondwana Research, 24: 298-329.
  • 30. Kylander-Clark, A. R. C., Hacker, B. R. & Cottle, J. M., 2013. Laser-ablation split-stream ICP petrochronology. Chemical Geology, 345: 99-112.
  • 31. Lobkowicz, M., Štédrá, V & Schulmann, K., 1996. Late-Variscan extensional collapse of the thickened Moldanubian crust in the southern Bohemia. Journal of the Czech Geological Society, 41: 123-38.
  • 32. Malavieille, J., 1993. Late Orogenic Extension in Mountains Belts: Insight from the Basin and Range and the Late Paleozoic Variscan Belt. Tectonics, 12: 1115-1130.
  • 33. Malavieille, J., Guihot, P., Costa, S., Lardeaux, J. M. & Gardien, V., 1990. Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. Etienne Late Carboniferous basin. Tectonophysics, 117: 139-149.
  • 34. Matte, P., 1991. Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics, 196: 309-337.
  • 35. Matte, P., 2001. The Variscan collage and orogeny (480-290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova, 13: 122-128.
  • 36. Mazur, S., 1995. Structural and metamorphic evolution of the country rocks at the eastern contact of the Karkonosze granite in the southern Rudawy Janowickie Mts and Lasocki Range. Geologia Sudetica, 29: 31-98. [In Polish, with English summary.]
  • 37. Mazur, S. & Aleksandrowski, P., 2001. The Teplá(?)/Saxothuringian suture in the Karkonosze-Izera massif, Western Sudetes, Central European Variscides. International Journal of Earth Sciences, 90: 341-360.
  • 38. Mazur, S. & Kryza, R., 1996. Superimposed compressional and extensional tectonics in the Karkonosze-Izera Block, NE Bohemian Massif. In: Oncken, O. & Janssen, C. (eds), Basement Tectonics 11. Springer, Dordrecht, pp. 51-66.
  • 39. Melichar, R., 2004. Tectonics of the Prague Synform: a hundred years of scientific discussion. Krystalinikum, 30: 167-187.
  • 40. Mikulski, S. Z., Williams, I. S. & Bagiński, B., 2013. Early Carboniferous (Viséan) emplacement of the collisional Kłodzko-Złoty Stok granitoids (Sudetes, SW Poland): constraints from geochemical data and zircon U-Pb ages. International Journal of Earth Sciences, 102: 1007-1027.
  • 41. Mlynář, A. & Melichar, R., 1999. Tectonically strained durba- chites from the vicinity of Nové Město na Moravě (Western Moravia). Geologické vyzkumy na Moravê a ve Slezsku, 6: 114-116. [In Czech, with English summary.]
  • 42. Nagata, T., 1961. Rock Magnetism, Second Edition. Maruzen Company Ltd., Tokyo, 350 pp.
  • 43. Orlov, A., 1933. Contribution à l'étude pétrographique du massif „granitique“ de la Bohême Centrale (région de Říčany-Benešov-Milevsko-Písek). Věstnik Státního geologického Ústavu Československé Republiky, 9: 135-144. [In Czech, with French summary.]
  • 44. Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J., 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26: 2508-2518.
  • 45. Pešek, J., 1994. Carboniferous of Central and Western Bohemia. Czech Geological Survey, Prague, 60 pp.
  • 46. Petrus, J. A. & Kamber, B. S., 2012. VizualAge: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36: 247-270.
  • 47. Pitra, P., Burg, J. P., Schulmann, K. & Ledru, P., 1994. Late oro- genic extension in the Bohemian Massif: petrostructural evidence in the Hlinsko region. Acta Geodynamica, 7: 15-30.
  • 48. Porębski, S. J., 1981. Świebodzice succession (upper Devonian- lowest Carboniferous; Western Sudetes): a prograding, massflow dominated fan-delta complex. Geologia Sudetica, 16: 101-192. [In Polish, with English summary.]
  • 49. Porębski, S. J., 1990. Onset of coarse clastic sedimentation in the Variscan realm of the Sudetes (SW Poland): an example from the Upper Devonian-Lower Carboniferous Świebodzice succession. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 179: 259-274.
  • 50. Pystina Y. & Pystin, A., 2019. Th/U relations as an indicator of the genesis of metamorphic zircons (on the example of the north of the Urals). In: Glagolev, S. (ed.), 14th International Congress for Applied Mineralogy (ICAM2019). Belgorod State Technological University named after V. G. Shukhov, 23-27 September 2019, Belgorod, Russia. Springer Open, Cham, pp. 129-132.
  • 51. Rey, P., Vanderhaeghe, O. & Teyssier, C., 2001. Gravitational collapse of the continental crust: definition, regimes and modes. Tectonophysics, 342: 435-449.
  • 52. Rodríguez-Méndez, L., Cuevas, J. & Tubí, J. M., 2016. Post-Variscan basin evolution in the central Pyrenees: Insights from the Stephanian-Permian Anayet Basin. Comptes Rendus Geoscience, 348: 333-341.
  • 53. Schaltegger, U., Schmitt, A. K. & Horstwood, S. A., 2015. U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geology, 402: 89-110.
  • 54. Schulmann, K., Konopásek, J., Janousek, V., Lexa, O., Lardeaux, J. M., Edel, J. B., Stípská, P. & Ulrich, S., 2009. An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes Rendus Geoscience, 341: 266-286.
  • 55. Shore, M. & Fowler, A. D., 1996. Oscillatory zoning in minerals: a common phenomenon. The Canadian Mineralogist, 34: 1111-1126.
  • 56. Sláma, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J., 2008. Plesovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249: 1-35.
  • 57. Stampfli, G. M., von Raumer, J. F. & Borel, G. D., 2002. Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. In: Catalan, J. R. M., Hatcher, R. D., Arenas, R. & Garcia, F. D. (eds), Variscan-Appalachian Dynamics: The Building of the Late Paleozoic Basement, Geological Society of America Special Papers, 364: 263-280.
  • 58. Suppe, J., 1985. Principles of Structural Geology. Prentice Hall, Englewood Cliffs, New Jersey, 537 pp.
  • 59. Svoboda, J. (ed.), 1964. Regionání geologie CSSR. Díl, I, Cesky masív. Svazek 1, Krystalinikum. Nakladatelstvví Ceskoslovenské akademie véd, Praha, 378 pp. [In Czech.]
  • 60. Tarling, D. H. & Hrouda, F., 1993. The Magnetic Anisotropy of Rocks. Chapman and Hall, London, 217 pp.
  • 61. Tunheng, A. & Hirata, T., 2004. Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry. Journal of Analytical Atomic Spectrometry, 19: 932-934.
  • 62. Turnau, E., Żelaźniewicz, A. & Franke, W., 2002. Middle to early late Viséan onset of late orogenic sedimentation in the Intra-Sudetic Basin, West Sudetes: miospore evidence and tectonic. Geologia Sudetica, 34: 9-16.
  • 63. Vejnar, Z., 1974. Application of cluster analysis in the multivariate petrochemical classification of the rocks of the Central Bohemian Pluton. Věstnik Ústředního ústavu geologického, 49: 29-34. [In Czech, with English summary.]
  • 64. Verner, K. & Vondrovic, L., 2010. The record of structural evolution and U-Pb zircon dating of the tonalite intrusions (Policka Crystalline Unit, Bohemian Massif). Trabajos de Geología, 30: 316-321.
  • 65. Vondrovic, L., Verner, K., Buriánek, D., Halodová, P., Kachlík, V. & Míková, J., 2011. Emplacement, structural and P-T evolution of the ~346 Ma Miřetín Pluton (eastern Teplá-Barrandian Zone, Bohemian Massif): implications for regional transpres- sional tectonics. Journal of Geoscience, 56: 343-357.
  • 66. Weidenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. & Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19: 1-23.
  • 67. Žák, J., Sláma, J. & Burjak, M., 2017. Rapid extensional unroofing of a granite-migmatite dome with relics of high-pressure rocks, the Podolsko complex, Bohemian Massif. Geological Magazine, 154: 354-380.
  • 68. Žák, J., Verner, K., Holub, V. F., Kabele, P, Chlupáčová, M. & Halodová, P., 2012. Magmatic to solid state fabrics in syn- tectonic granitoids recording early Carboniferous orogenic collapse in the Bohemian Massif. Journal of Structural Geology, 36: 27-42.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f84e713f-2875-48ae-ba28-79a0e1f291b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.