PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compressor modeling using Greitzer model validated by pressure oscillations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays compressors are used in almost every industry. Compressor failure can suspend production of the whole system so the importance of preventing from failures is obvious and essential. One of the most dangerous flow instabilities which is capable of destroying machine in few seconds is surge, which occurs in conditions of low mass flow rate. Greitzer model, apart from its long history, is still most common mathematical model describing surge. It is widely used to predict the surge onset and pressure oscillations during it. However, it is based on parameters that are not directly related to real machine and their choice is not always obvious. Therefore, the calculations may be inaccurate which results in wrong surge prediction. The other approach to Greitzer model is presented in this paper, which in some cases can assure that the process of compressor modeling is more accurate. The applicability of Greitzer surge model for real machines has been analyzed. Method of implementation is based on experimental pressure signal gathered during unstable work of compressor. Presented method is based on experimental compressor characteristic and outlet pressure signal from unstable work of compressor. From that data it is possible to determinate the value of Greitzer model’s parameters for selected operational point. Thanks to this method this model could be applied for reliable antisurge protection.
Rocznik
Tom
Strony
69--89
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Institute of Turbomachinery, Lodz University of Technology, 219/223 Wólczańska, 90-924 Łódź, Poland
  • Politechnika Łódzka Instytut Maszyn Przepływowych
Bibliografia
  • [1] Mirsky S., Moines D., Jacobson W.: Development and design of antisurge and performance control systems. In: Proc. 42nd Turbomachinery Symp., Houston, Oct. 1-3, 2012, 2013.
  • [2] Wu X., Li Y.: Computationally Efficient Data-Driven Surge Map Modeling for Centrifugal Air Compressors. In: Proc. American Control Conf. Jul. 2007, 810–815.
  • [3] Wu X., Li Y.: Self-learning based centrifugal compressor surge mapping with computationally efficient adaptive asymmetric support vector machine. J. Dyn. Sys., Meas., Control-T ASME 134(2012), 5, 051008.
  • [4] Jager, de, B.: Rotating stall and surge control: A survey. In: Decision and Control. Proc. 34th IEEE Conf., Dec. 1995, 1857–1862.
  • [5] Willems F., Jager, de, B.: Modeling and Control of Rotating Stall and Surge? An Overview. Control Applications. In: Proc. IEEE Int. Conf., Sept. 1998, 331–335.
  • [6] Gravdahl J.T., Egeland O.: Compressorsurge and rotating stall: Modeling and control. Springer Verlag, 2011.
  • [7] Horodko L.: Application of time-frequency analysis to analyze non stationary operation of the centrifugal blower. Zeszyty Naukowe. Rozprawy Naukowe Politechniki Łódzkiej, Łódź 2006, 4–114 (in Polish).
  • [8] Pinsley J.E., Guenette G.R., Epstein A.H., Greitzer E.M.: Active Stabilization of Centrifugal Compressor Surge. J. Turbomach. 113(1991), 4, 723.
  • [9] Willems F., Jager, de, B.: Modeling and control of compressor flow instabilities. IEEE Contr. Sys. Mag. 19(1999), 5, 8–18.
  • [10] Mickers R.W.: Comparative Parameter Studies of Dynamic Models for Centrifugal Compression Systems. Technische Universiteit Eindhoven, 2006.
  • [11] Willems F.: Modeling and Bounded Feedback Stabilization of Centrifugal Compressor Surge. Technische Universiteit Eindhoven, 2000.
  • [12] Emmons H.W., Pearson C.E., Grant H.P.: Compressor surge and stall propagation. Trans. ASME 77(1955), 4, 455–469.
  • [13] Badmus O.O., Chowdhury S., Nett C.N.: Nonlinear control of surge in axial compression systems. Automatica 32(1996), 1, 59–70.
  • [14] Botros K.K.: Transient phenomena in compressor stations during surge. In: Proc. ASME 1992 Int. Gas Turbine and Aeroengine Cong. Expo. 1992, V003T07A003–V003T07A003.
  • [15] Greitzer E.: Surge and rotating stall in axial flow compressors—Part I: Theoretical compression system model. J. Eng. Gas Turbines Power 98(1976), 190–198.
  • [16] Hansen K.E., Jorgensen P., Larsen P.S.: Experimental and theoretical study of surge in a small centrifugal compressor. J. Fluids Eng. 103(1981), 3, 391–395.
  • [17] Fink D.A., Cumpsty N.A., Greitzer E.: Surge dynamics in a free-spool centrifugal compressor system. J. Turbomach. 114(1992), 2, 321–332.
  • [18] Greitzer E.M., Moore F.K.: A theory of post-stall transients in axial compression systems. Part IŮDevelopment of equations. J. Eng. Gas Turbines Power 108(1986), 1, 68–76.
  • [19] Haynes J.M., Hendricks G.J., Epstein, A.H.: Active stabilization of rotating stall in a three-stage axial compressor. In: Proc. ASME 1993 Int. Gas Turbine and Aeroengine Cong. Expo., 1993, V03CT17A007–V03CT17A007.
  • [20] Greitzer E.: Surge and rotating stall in axial flow compressors—Part II: Experimental results and comparison with theory. J. Eng. Gas Turbines Power 98(1976), 199–211.
  • [21] Meuleman C.: Measurement and Unsteady Flow Modeling of Centrifugal Compressor Surge. Technische Universiteit Eindhoven, 2002.
  • [22] Helvoirt, van, J., Jager, de, B.: Dynamic model including piping acoustics of a centrifugal compression system. J. Sound Vib. 302(2007), 1–2, 361–378.
  • [23] Willems F., De Jager B., de Jager B.: Active compressor surge control using a one-sided controlled bleed/recycle valve. In: Proc. IEEE Conf. on Decision and Control 3(1998), 2546– 2551.
  • [24] Yoon S.Y., Lin Z., Goyne C., Allaire P.E.: An enhanced Greitzer compressor model including pipeline dynamics and surge. J. Vib. Acoustics 133(2011), 5, 051005.
  • [25] Grapow F.: Influence of Greitzer parameter on the theoretical centrifugal compressor’s work. 33rd Int. Seminar of the Students’ In: Associations Proc., 2014.
  • [26] Goyne C., Allaire P.E.: An enhanced Greitzer compressor model with pipeline dynamics included. In: Proc. American Control Conf. 2011, 4731–4736.
  • [27] Meuleman C., Willems F., Lange, de, R., Jager,de, B.: Surge in a low-speed radial compressor. Int. Gas Turbine and Aeroengine Congress, 1998
  • [28] Helvoirt, van, J., Jager, de, B., Steinbuch M., Smeulers J.: Stability parameter identification for a centrifugal compression system. In: Proc. 43rd IEEE Conf. on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 4(2004), 3400–3405.
  • [29] Helvoirt, van, J., Jager, de, B., Steinbuch M., Smeulers J.: Modeling and identification of centrifugal compressor dynamics with approximate realizations. In: Proc. IEEE Conf. on Control Applications, 2005. CCA 2005, 1441–1447.
  • [30] Liśkiewicz G., Horodko L., Stickland M., Kryłłowicz W.: Identification of phenomena preceding blower surge by means of pressure spectral maps. Exp. Thermal Fluid Sci. 54(2014), 267–278.
  • [31] Garcia D., Stickland M., Liśkiewicz G.: Dynamical system analysis of unstable Open Eng. 5(2015), 1, 332–342.
  • [32] Liśkiewicz G., Horodko L.: Time-frequency analysis of the surge onset in the centrifugal blower. Open Eng. 5(2015), 1, 299–306.
  • [33] Liśkiewicz G.: Numerical model of the flow phenomena preceding surge in the centrifugal blower and assessment of its applicability in designing anti-surge devices. Politechnika Łódzka, 2014.
  • [34] Kuz’min V.A., Khazhuev V.N.: Measurement of liquid or gas flow (flow velocity) using convergent channels with a witoszynski profile. Meas. Tech. 36(1993), 3, 288–296.
  • [35] Gravdahl J.T., Egeland O.: A Moore-Greitzer axial compressor model with spool dynamics. Proc. 36th IEEE Conf. Decision and Control 5(1997), 4714–4719.
  • [36] Braembussche, van den, R.: Centrifugal compressors analysis and design. 192(2014).
  • [37] Hagino N., Uda K., Kashiwabara Y.: Prediction and Active Control of Surge Inception of a Centrifugal Compressor 2003.
  • [38] Ng E., Liu N., Tan S.: Parametric study of Greitzer’s instability flow model through compressor system using the Taguchi method. Int. J. Rotating Machinery 10(2004), 2, 91–97.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f84d1c4c-3ffe-4669-b96a-a44e46df7dea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.