Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Psoriasis vulgaris is a common, worldwide autoimmune skin disorder characterized by T-cells mediated hyperproliferation of keratinocytes. The feature of T-cells arbitrated psoriatic lesions is the epidermal infiltration of oligoclonal CD8+ T-cells and also of CD4+ T-cells in the dermis. Psoriatic scratches are identified by red and enlarged lesions along with silver whitish scales. In this article, we propose a mathematical model for psoriasis, involving a set of differential equations, concerning T-cells, dendritic cells and epidermal keratinocytes. We introduce T-cell proliferation in the system, where T-cells are generated through expansion of accessible CD4+ T-cells from precursors. We are interested in observing how the cell biological system develops through T-cell proliferation in presence of control with respect to T-cells and keratinocytes. We study the model in both implicit and explicit ways and measure the effect of drug on the system through impulsive drug therapy.
Czasopismo
Rocznik
Tom
Strony
365--386
Opis fizyczny
Bibliogr. 38 poz., wykr.
Twórcy
autor
- Centre for Mathematical Biology and Ecology Department of Mathematics, Jadavpur University Kolkata - 700032, India
autor
- Centre for Mathematical Biology and Ecology Department of Mathematics, Jadavpur University Kolkata - 700032, India
Bibliografia
- 1. AKBARA, A.N. and SALMONB,M. (1997) Cellular environments and apoptosis: tissue micro environments control activated T-cell death. Immunology Today 18(2), 72-76.
- 2. BAKER, A.S. and FRY, L. (1992) The immunology of psoriasis. British Journal of Dermatology 126, 1-9.
- 3. BIRKHOFF, G. and ROTA, G.C. (1982) Ordinary Differential Equations. Chapman and Hall.
- 4. BONNANS, J.F. and HERMANT, A. (2009) Revisiting the analysis of optima control problems with several state constraints. Control and Cybernetics 38 (4A), 1021-1052.
- 5. BONNARD, B. and SUGNY, D. (2009) Geometric optimal control and twolevel dissipative quantum systems. Control and Cybernetics 38 (4A), 1053-1080.
- 6. CAMPION, A.L., GAGNERAULT, M.C., AUFFRAY, C., BECOURT, C., RIVIERE, M.P., LALLEMAND, E., BIENVENU, B., MARTIN, B., LEPAULT, F. and LUCAS, B. (2009) Lymphopenia-induced spontaneous Tcell proliferation as a cofactor for autoimmune disease development. Blood 114(9), 1784-1793.
- 7. DE PILLIS, L.G. and RADUNSKAYA, A. (2001) A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. Journal of Theoretical Medicine 3(2), 79-100.
- 8. DE SOUZA, J.A.M.F., CAETANO, M.A.L. and YONEYAMA, T. (2000) Optimal Control Theory Applied to the Anti-Viral Treatment of AIDS. Decision and Control, Proceedings of the 39th IEEE, 4839-4844.
- 9. EDDY, D.J., BURROWS, D. and BRIDGES, J.M. (1990) Clearance of severe psoriasis after allogenic bone marrow transplantation. British Medical Journal 300, 908.
- 10. FISTER, K.R. and PANETTA, J.C. (2000) Optimal Control Applied to Cell-Cycle-Specific Cancer Chemotherapy. SIAM Journal Applied Mathematics 60(3), 1059-1072.
- 11. FLEMING, W.H. and RISHEL R.W. (1975) Deterministic and Stochastic Optimal Control. Springer Verlag.
- 12. GASTON, L., LASSONDE, M., BERNIER–BUZZANGA, J.B., HODGINS, S. and CROMBEZ, J.C. (1987) Psoriasis and stress: A prospective study. Journal of the American Academy of Dermatology 17(1), 82-86.
- 13. GHOSH, N., SINGH, P.N. and KUMAR, V. (2008) Novel immunobiologics for psoriasis. Indian J Pharmacol 40(3), 95-102.
- 14. GRIFFITHS, T.W., GRIFFITHS, C.E.M. and VOORHEES, J.J. (1995) Immunopathogenesis and immunotherapy of psoriasis. Dermatologic Clinics 13, 739-749.
- 15. GUDJONSSON, J.E., JOHNSTON, A., SIGMUNDSDOTTIR, H. and VALDI–MARSSON, H. (2004) Immunopathogenic mechanisms in psoriasis. Clinical and Experimental Immunology 135(1), 1-8.
- 16. JOSHI, H.R. (2002) Optimal Control of an HIV Immunology Model. Optimal control Application and Methods 23(4), 199-213.
- 17. KIRSCHNER, D., LENHART, S. and SERBIN, S. (1997) Optimal control of the chemotherapy of HIV. Journal of Mathematical Biology 35, 775-792.
- 18. KROGSTAD, A.L., SWANBECK, G. and WALLIN, B.J. (1995) Axon reflex mediated vasodilation in the psoriatic plaque. Journal of Investigative Dermatology 104, 872-876.
- 19. KRUEGER, J.G. and BOWCOCK, A. (2005) Psoriasis pathophysiology: Current concepts of pathogenesis. Ann Rheum Dis 64(2), 30-36.
- 20. LOU, J., CHEN, L. and RUGGERI, T. (2009) An Impulsive Differential Model on Post Exposure Prophylaxis to HIV-1 Exposed Individual. Journal of Biological Systems 17(4), 659-683.
- 21. LOU, J. and SMITH, R.J. (2011)Modelling the effects of adherence to the HIV fusion inhibitor enfuvirtide. Journal of Theoretical Biology 268, 1-13.
- 22. LUKES, D.L. (1982) Differential Equations: Classical to Controlled. Mathematics in Science and Engineering. Academic Press.
- 23. MORGANROTH, G.S., CHAN, L.S., WEINSTEIN, G.D., VOORHEES, J.J. and COOPER, K.D. (1991) Proliferating Cells in Psoriatic Dermis Are Comprised Primarily of T Cells, Endothelial Cells, and Factor XIIIa+ Perivascular Dendritic Cells. Journal of Investigative Dermatology 96, 1523-1747.
- 24. MURRAY, J.M. (1990 a) Optimal control for a cancer chemotherapy problem with general growth and loss functions. Mathematical Biosciences 98(2), 273-287.
- 25. MURRAY, J.M. (1990 b) Some optimal control problems in cancer chemotherapy with a toxicity limit. Mathematical Biosciences 100, 49-67.
- 26. ROY, P.K. and BHADRA, J. (2010) Comparative study of the suppression on T-cell and Dendritic cells in a mathematical model of Psoriasis. International Journal of Evolution Equation 5(3), 309-326.
- 27. ROY, P.K., BHADRA, J. and CHATTOPADHYAY, B. (2010) Mathematical Modeling on Immunopathogenesis in Chronic Plaque of Psoriasis: A Theoretical Study. Lecture Notes in Engineering and Computer Science 1, 550-555.
- 28. ROY, P.K. and CHATTERJEE, A.N. (2010) T-cell Proliferation in a Mathematical Model of CTL Activity Through HIV-1 Infection. Proceedings of the World Congress on Engineering I, 615-620.
- 29. ROY, P.K., DATTA, A. and CHATTERJEE, A.N. (2011) Saturation Effects on Immunopathogenic Mechanism of Psoriasis: A Theoretical Approach. Acta Analysis Functionalis Applicata 13(3), 310-318.
- 30. ROY, P.K. and DATTA, A. (2013) Impact of Cytokine Release in Psoriasis: A Control Based Mathematical Approach. Journal of Nonlinear Evolution Equations and Applications 2013(3), 23-42.
- 31. ROY, P.K. and DATTA, A. (2012) Negative Feedback Control may Regulate Cytokines Effect during Growth of Keratinocytes in the Chronic Plaque of Psoriasis: A Mathematical Study. International Journal of Applied Mathematics 25(2), 233-254.
- 32. SABAT, R., PHILIPP, S., H¨OFLICH, C., KREUTZER, S., WALLACE, E., ASADULLAH, K., VOLK, H.D., STERRY, W. and WOLK, K. (2007) Immunopathogenesis of psoriasis. Experimental Dermatology 16(10), 779-798.
- 33. SMITH, R.J. (2008) Explicitly accounting for antiretroviral drug uptake in theoretical HIV models predicts long-term failure of protease-only therapy. Journal of Theoretical Biology 251(2), 227-237.
- 34. SMITH, R.J. and WAHL, L.M. (2005) Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects. The Bulletin of Mathematical Biology 67(4), 783-813.
- 35. SNOWDEN, J.H. and HEATON D.C. (1997) Development of psoriasis after syngeneic bone marrow transplant from psoriatic donor: further evidence for adoptive autoimmunity. British Journal of Dermatology 137, 130-132.
- 36. TIAN, B.D., QIU, Y.H. andWANG, H.J. (2008) Equilibriums and permanencje for an Autonomous competitive system with Feed Back Control. Applied Mathematical Sciences 2(50), 2501-2508.
- 37. VLADIRMIRSSON, H., BAKER, B.S. and JONDOTTIR, I. (1986) Psoriasis: a disease of abnormal proliferation induced by T lymphocytes. Immunology Today 7, 256-259.
- 38. WHITE, S.H., NEWCOMER, V.D., MICKEY, M.R. and TERASAKI, P.I. (1972) Disturbance of HL-A Antigen Frequency in Psoriasis. The New England Journal of Medicine 287(15), 740-743.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f84b68aa-7ef3-46da-b64b-6dd631620058