PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

T-cell proliferation on immunopathogenic mechanism of psoriasis: a control based theoretical approach

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Psoriasis vulgaris is a common, worldwide autoimmune skin disorder characterized by T-cells mediated hyperproliferation of keratinocytes. The feature of T-cells arbitrated psoriatic lesions is the epidermal infiltration of oligoclonal CD8+ T-cells and also of CD4+ T-cells in the dermis. Psoriatic scratches are identified by red and enlarged lesions along with silver whitish scales. In this article, we propose a mathematical model for psoriasis, involving a set of differential equations, concerning T-cells, dendritic cells and epidermal keratinocytes. We introduce T-cell proliferation in the system, where T-cells are generated through expansion of accessible CD4+ T-cells from precursors. We are interested in observing how the cell biological system develops through T-cell proliferation in presence of control with respect to T-cells and keratinocytes. We study the model in both implicit and explicit ways and measure the effect of drug on the system through impulsive drug therapy.
Rocznik
Strony
365--386
Opis fizyczny
Bibliogr. 38 poz., wykr.
Twórcy
autor
  • Centre for Mathematical Biology and Ecology Department of Mathematics, Jadavpur University Kolkata - 700032, India
autor
  • Centre for Mathematical Biology and Ecology Department of Mathematics, Jadavpur University Kolkata - 700032, India
Bibliografia
  • 1. AKBARA, A.N. and SALMONB,M. (1997) Cellular environments and apoptosis: tissue micro environments control activated T-cell death. Immunology Today 18(2), 72-76.
  • 2. BAKER, A.S. and FRY, L. (1992) The immunology of psoriasis. British Journal of Dermatology 126, 1-9.
  • 3. BIRKHOFF, G. and ROTA, G.C. (1982) Ordinary Differential Equations. Chapman and Hall.
  • 4. BONNANS, J.F. and HERMANT, A. (2009) Revisiting the analysis of optima control problems with several state constraints. Control and Cybernetics 38 (4A), 1021-1052.
  • 5. BONNARD, B. and SUGNY, D. (2009) Geometric optimal control and twolevel dissipative quantum systems. Control and Cybernetics 38 (4A), 1053-1080.
  • 6. CAMPION, A.L., GAGNERAULT, M.C., AUFFRAY, C., BECOURT, C., RIVIERE, M.P., LALLEMAND, E., BIENVENU, B., MARTIN, B., LEPAULT, F. and LUCAS, B. (2009) Lymphopenia-induced spontaneous Tcell proliferation as a cofactor for autoimmune disease development. Blood 114(9), 1784-1793.
  • 7. DE PILLIS, L.G. and RADUNSKAYA, A. (2001) A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. Journal of Theoretical Medicine 3(2), 79-100.
  • 8. DE SOUZA, J.A.M.F., CAETANO, M.A.L. and YONEYAMA, T. (2000) Optimal Control Theory Applied to the Anti-Viral Treatment of AIDS. Decision and Control, Proceedings of the 39th IEEE, 4839-4844.
  • 9. EDDY, D.J., BURROWS, D. and BRIDGES, J.M. (1990) Clearance of severe psoriasis after allogenic bone marrow transplantation. British Medical Journal 300, 908.
  • 10. FISTER, K.R. and PANETTA, J.C. (2000) Optimal Control Applied to Cell-Cycle-Specific Cancer Chemotherapy. SIAM Journal Applied Mathematics 60(3), 1059-1072.
  • 11. FLEMING, W.H. and RISHEL R.W. (1975) Deterministic and Stochastic Optimal Control. Springer Verlag.
  • 12. GASTON, L., LASSONDE, M., BERNIER–BUZZANGA, J.B., HODGINS, S. and CROMBEZ, J.C. (1987) Psoriasis and stress: A prospective study. Journal of the American Academy of Dermatology 17(1), 82-86.
  • 13. GHOSH, N., SINGH, P.N. and KUMAR, V. (2008) Novel immunobiologics for psoriasis. Indian J Pharmacol 40(3), 95-102.
  • 14. GRIFFITHS, T.W., GRIFFITHS, C.E.M. and VOORHEES, J.J. (1995) Immunopathogenesis and immunotherapy of psoriasis. Dermatologic Clinics 13, 739-749.
  • 15. GUDJONSSON, J.E., JOHNSTON, A., SIGMUNDSDOTTIR, H. and VALDI–MARSSON, H. (2004) Immunopathogenic mechanisms in psoriasis. Clinical and Experimental Immunology 135(1), 1-8.
  • 16. JOSHI, H.R. (2002) Optimal Control of an HIV Immunology Model. Optimal control Application and Methods 23(4), 199-213.
  • 17. KIRSCHNER, D., LENHART, S. and SERBIN, S. (1997) Optimal control of the chemotherapy of HIV. Journal of Mathematical Biology 35, 775-792.
  • 18. KROGSTAD, A.L., SWANBECK, G. and WALLIN, B.J. (1995) Axon reflex mediated vasodilation in the psoriatic plaque. Journal of Investigative Dermatology 104, 872-876.
  • 19. KRUEGER, J.G. and BOWCOCK, A. (2005) Psoriasis pathophysiology: Current concepts of pathogenesis. Ann Rheum Dis 64(2), 30-36.
  • 20. LOU, J., CHEN, L. and RUGGERI, T. (2009) An Impulsive Differential Model on Post Exposure Prophylaxis to HIV-1 Exposed Individual. Journal of Biological Systems 17(4), 659-683.
  • 21. LOU, J. and SMITH, R.J. (2011)Modelling the effects of adherence to the HIV fusion inhibitor enfuvirtide. Journal of Theoretical Biology 268, 1-13.
  • 22. LUKES, D.L. (1982) Differential Equations: Classical to Controlled. Mathematics in Science and Engineering. Academic Press.
  • 23. MORGANROTH, G.S., CHAN, L.S., WEINSTEIN, G.D., VOORHEES, J.J. and COOPER, K.D. (1991) Proliferating Cells in Psoriatic Dermis Are Comprised Primarily of T Cells, Endothelial Cells, and Factor XIIIa+ Perivascular Dendritic Cells. Journal of Investigative Dermatology 96, 1523-1747.
  • 24. MURRAY, J.M. (1990 a) Optimal control for a cancer chemotherapy problem with general growth and loss functions. Mathematical Biosciences 98(2), 273-287.
  • 25. MURRAY, J.M. (1990 b) Some optimal control problems in cancer chemotherapy with a toxicity limit. Mathematical Biosciences 100, 49-67.
  • 26. ROY, P.K. and BHADRA, J. (2010) Comparative study of the suppression on T-cell and Dendritic cells in a mathematical model of Psoriasis. International Journal of Evolution Equation 5(3), 309-326.
  • 27. ROY, P.K., BHADRA, J. and CHATTOPADHYAY, B. (2010) Mathematical Modeling on Immunopathogenesis in Chronic Plaque of Psoriasis: A Theoretical Study. Lecture Notes in Engineering and Computer Science 1, 550-555.
  • 28. ROY, P.K. and CHATTERJEE, A.N. (2010) T-cell Proliferation in a Mathematical Model of CTL Activity Through HIV-1 Infection. Proceedings of the World Congress on Engineering I, 615-620.
  • 29. ROY, P.K., DATTA, A. and CHATTERJEE, A.N. (2011) Saturation Effects on Immunopathogenic Mechanism of Psoriasis: A Theoretical Approach. Acta Analysis Functionalis Applicata 13(3), 310-318.
  • 30. ROY, P.K. and DATTA, A. (2013) Impact of Cytokine Release in Psoriasis: A Control Based Mathematical Approach. Journal of Nonlinear Evolution Equations and Applications 2013(3), 23-42.
  • 31. ROY, P.K. and DATTA, A. (2012) Negative Feedback Control may Regulate Cytokines Effect during Growth of Keratinocytes in the Chronic Plaque of Psoriasis: A Mathematical Study. International Journal of Applied Mathematics 25(2), 233-254.
  • 32. SABAT, R., PHILIPP, S., H¨OFLICH, C., KREUTZER, S., WALLACE, E., ASADULLAH, K., VOLK, H.D., STERRY, W. and WOLK, K. (2007) Immunopathogenesis of psoriasis. Experimental Dermatology 16(10), 779-798.
  • 33. SMITH, R.J. (2008) Explicitly accounting for antiretroviral drug uptake in theoretical HIV models predicts long-term failure of protease-only therapy. Journal of Theoretical Biology 251(2), 227-237.
  • 34. SMITH, R.J. and WAHL, L.M. (2005) Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects. The Bulletin of Mathematical Biology 67(4), 783-813.
  • 35. SNOWDEN, J.H. and HEATON D.C. (1997) Development of psoriasis after syngeneic bone marrow transplant from psoriatic donor: further evidence for adoptive autoimmunity. British Journal of Dermatology 137, 130-132.
  • 36. TIAN, B.D., QIU, Y.H. andWANG, H.J. (2008) Equilibriums and permanencje for an Autonomous competitive system with Feed Back Control. Applied Mathematical Sciences 2(50), 2501-2508.
  • 37. VLADIRMIRSSON, H., BAKER, B.S. and JONDOTTIR, I. (1986) Psoriasis: a disease of abnormal proliferation induced by T lymphocytes. Immunology Today 7, 256-259.
  • 38. WHITE, S.H., NEWCOMER, V.D., MICKEY, M.R. and TERASAKI, P.I. (1972) Disturbance of HL-A Antigen Frequency in Psoriasis. The New England Journal of Medicine 287(15), 740-743.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f84b68aa-7ef3-46da-b64b-6dd631620058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.