Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the present study was to assess the physicochemical compatibility of a promising energetic salt, 5-amino-1H-tetrazole nitrate (5-ATN), with some typical materials. Thermal techniques (differential scanning calorimetry (DSC) and vacuum stability test (VST)) and non-thermal techniques (X-ray diffractometry (XRD) and Fourier Transform Infrared Spectroscopy (FTIR)) were applied. Five energetic materials (TNT, RDX, HMX, CL-20 and AP) and three common additives (Al, DOS and F2604-2) were tested to evaluate their compatibility with 5-ATN. Based on the DSC results, except for AP that was only partially compatible with 5-ATN, all of the selected materials exhibited good compatible with 5-ATN. The VST test further confirmed the compatibility of the 5-ATN/AP mixtures. Combined with the thermal methods, the FTIR results agreed with the DSC findings. The XRD results showed some differences.
Słowa kluczowe
Rocznik
Tom
Strony
100--114
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Nanjing University of Science and Technology, Xiaolingwei 200, 210094 Nanjing, China
autor
- Nanjing University of Science and Technology, Xiaolingwei 200, 210094 Nanjing, China
autor
- Nanjing University of Science and Technology, Xiaolingwei 200, 210094 Nanjing, China
autor
- Nanjing University of Science and Technology, Xiaolingwei 200, 210094 Nanjing, China
Bibliografia
- [1] Liu, Q.; Jin, B.; Peng, R.; Guo, Z.; Zhao, J.; Zhang, Q.; Shang, Y. Synthesis, Characterization and Properties of Nitrogen-Rich Compounds Based on Cyanuric Acid: a Promising Design in the Development of New Energetic Materials. J. Mater. Chem. A 2016, 4(13): 4971-4981.
- [2] Joo, Y. H.; Shreeve, J. N. M. High-density Energetic Mono- or Bis(oxy)-5-nitroiminotetrazoles. Angew. Chem. Int. Ed. 2010, 49(40): 7320-3.
- [3] Zhang, Y.; Parrish, D. A.; Shreeve, J. N. M. 4-Nitramino-3,5-dinitropyrazole-based Energetic Salts. Chem- Eur. J. 2012, 18(3): 987-994.
- [4] Lin, Q. H.; Li, Y. C.; Li, Y. Y.; Wang, Z.; Liu, W.; Qi, C.; Pang, S. P. Energetic Salts Based on 1-Amino-1,2,3-triazole and 3-Methyl-1-amino-1,2,3-triazole. J. Mater. Chem. A 2012, 22(2): 666-674.
- [5] Singh, R. P.; Verma, R. D.; Meshri, D. T.; Shreeve, J. N. M. Energetic Nitrogenrich Salts and Ionic Liquids. Angew. Chem. Int. Ed., 2006, 45(22): 3584-3601.
- [6] Denffer, M. V.; Klapötke, T. M.; Kramer, G.; Spieß, G.; Welch, J. M. Improved Synthesis and X-Ray Structure of 5-Aminotetrazolium Nitrate. Propellants Explos. Pyrotech. 2005, 30(3): 191-195.
- [7] Tao, G. H.; Parrish, D. A.; Shreeve, J. M. Nitrogen-rich 5-(1-Methylhydrazinyl) tetrazole and its Copper and Silver Complexes. Inorg. Chem. 2012, 51(9): 5305-12.
- [8] Lin, Q. H.; Li, Y. C.; Qi, C.; Liu, W.; Wang, Y.; Pang, S. P. Nitrogen-rich Salts Based on 5-Hydrazino-1H-tetrazole: a New Family of High-density Energetic Materials. J. Mater. Chem. A 2013, 1(23): 6776-6785.
- [9] Gálvez-Ruiz, J. C.; Holl, G.; Karaghiosoff, K.; Klapötke, T. M.; Löhnwitz, K.; Mayer, P.; Nöth, H.; Polborn, K.; Rohbogner, C. J.; Suter, M.; Weigand, J. J. Derivatives of 1,5-Diamino-1H-tetrazole: a New Family of Energetic Heterocyclicbased Salts. Inorg. Chem. 2005, 44(12): 4237-53.
- [10] Srinivas, D.; Ghule, V. D.; Muralidharan, K.; Jenkins, H. D. B. Tetra-anionic Nitrogen-rich Tetrazole-based Energetic Salts. Chem- Asian. J. 2013, 8(5): 1023-1028.
- [11] Qu, X. N.; Yang, Q.; Han, J.; Wei, Q.; Xie, G.; Chen, S. P.; Gao, S. L. High Performance 5-Aminotetrazole-based Energetic MOF and its Catalytic Effect on Decomposition of RDX. RSC Adv. 2016, 6(52): 46212-46217.
- [12] Joo, Y. H.; Shreeve, J. N. M. Functionalized Tetrazoles from Cyanogen Azide with Secondary Amines. Eur. J. Org. Chem. 2010, 2009(21): 3573-3578.
- [13] Du, X. J.; Li, X. D.; Li, S. K.; Zou, M. S.; Yang, R. J.; Li, Y. C.; Pang, S. P. Energy Characteristics of Solid Propellant Containing 5-Amino-Tetrazolium Nitrate (5-ATEZN). (in Chinese) Chin. J. Energ. Mater. 2015, 23(8): 807-812.
- [14] Ma, G.; Zhang, T.; Zhang, J.; Yu, K. Thermal Decomposition and Molecular Structure of 5-Aminotetrazolium Nitrate. Thermochim. Acta 2004, 423(1-2): 137- 141.
- [15] Wang, J. P.; Yi, W. B.; Cai, C. An Improved Method for the Preparation of Energetic Aminotetrazolium Salts. Anorg. Allg. Chem. 2012, 638(1): 53-55.
- [16] Liu, W.; Li, Y. C.; Li, X. T.; Yang, Y. Z.; Lin, Q. H.; Pang, S. P. Theoretical Computation of 5-Aminotetrazolium Nitroformate. Chin. J. Energ. Mater. 2013, 21(2): 213-216.
- [17] Mazzeu, M. A. C.; Mattos, E. D. C.; Iha, K. Studies on Compatibility of Energetic Materials by Thermal Methods. JATM 2010, 2(1): 53-58.
- [18] Li, X.; Wang, B. L.; Lin, Q. H.; Chen, L. P. Compatibility Study of DNTF with Some Insensitive Energetic Materials and Inert Materials. J. Energ. Mater. 2016, 34(4): 409-415.
- [19] Huang, H.; Shi, Y.; Yang, J.; Li, B. Compatibility Study of Dihydroxylammonium 5,5′-Bistetrazole-1,1′-diolate (TKX-50) with Some Energetic Materials and Inert Materials. J. Energ. Mater. 2015, 33(1): 66-72.
- [20] Yılmaz, G. A.; Şen, D.; Kaya, Z. T.; Tinçer, T. Effect of Inert Plasticizers on Mechanical, Thermal, and Sensitivity Properties of Polyurethane-based Plastic Bonded Explosives. J. Appl. Polym. Sci. 2014, 131(20): 1366-1373.
- [21] de Klerk, W. P. C.; van der Heijden, A. E. D. M.; Veltmans, W. H. M. Thermal Analysis of the High-energetic Material HNF. J. Therm. Anal. Calorim. 2001, 64(3): 973-985.
- [22] Benchabane, M. III Chemical Compatibility Study of GAP Based Propellant by the DVST. J. Energ. Mater. 1993, 11(2): 119-134.
- [23] Tiţa, B.; Fuliaş, A.; Bandur, G.; Marian, E.; Tiţa, D. Compatibility Study between Ketoprofen and Pharmaceutical Excipients Used in Solid Dosage Forms. J. Pharmaceut. Biomed. 2011, 56(2): 221-227.
- [24] Gupta, A.; Kar, H. K. Solid State Compatibility Studies of Miconazole Using Thermal and Spectroscopic Methods. Adv. Anal. Chem. 2015, 5(3): 51-55.
- [25] Pramod, K.; Suneesh, C. V.; Shanavas, S.; Ansari, S. H.; Ali, J. Unveiling the Compatibility of Eugenol with Formulation Excipients by Systematic Drug- Excipient Compatibility Studies. J. Anal. Sci. Technol. 2015, 6(1): 34.
- [26] Joshi, B. V.; Patil, V. B.; Pokharkar, V. B. Compatibility Studies Between Carbamazepine and Tablet Excipients Using Thermal and Non-Thermal Methods. Drug. Dev. Ind. Industrial Pharm. 2002, 28(6): 687-694.
- [27] Haye, K. L.; de Klerk, W. P. C.; Miszczak, M.; Szymanowski, J. Compatibility Testing of Energetic Materials at TNO-PML and MIAT. J. Therm. Anal. Calorim. 2003, 72(3): 931-942.
- [28] de Klerk, W. P. C.; Schrader, M. A.; van der Steen, A. C. Compatibility Testing of Energetic Materials, which Technique? J. Therm. Anal. Calorim. 1999, 56(3):1123-1131.
- [29] Yan, Q. L.; Li, X. J.; Zhang, L. Y.; Li, J. Z.; Li, H. L.; Liu, Z. R. Compatibility Study of Trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some Energetic Components and Inert Materials. J. Hazard. Mater. 2008, 160(2-3): 529-534.
- [30] Myburgh, A. Standardization on STANAG Test Methods for Ease of Compatibility and Thermal Studies. J. Therm. Anal. Calorim. 2006, 85(1): 135-139.
- [31] Yue, P.; Heng, S. Y.; Han, F.; Zhang, L. Y.; He, S. R. Compatibilities of ADN with Five Kinds of Binders. (in Chinese) Chin. J. Energ. Mater. 2008, 16(1): 66-69.
- [32] Newman, A. W.; Byrn, S. R. Solid-state Analysis of the Active Pharmaceutical Ingredient in Drug Products. Drug. Discov. Today 2003, 8(19): 898-905.
- [33] Brostoff, L. B.; Centeno, S. A.; Ropret, P.; Bythrow, P.; Pottier, F. Combined X-ray Diffraction and Raman Identification of Synthetic Organic Pigments in Works of Art: from Powder Samples to Artists’ Paints. Anal. Chem. 2009, 81(15): 6096-6106.
- [34] Chadha, R.; Bhandari, S. Drug-excipient Compatibility Screening-role of Thermoanalytical and Spectroscopic Techniques. J. Pharmaceut. Biomed. 2014, 87(1434): 82-97.
- [35] de Barros Lima, I. P.; Lima, N. G. P. B.; Barros, D. M. C.; Oliveira, T. S.; Mendonça, C. M. S.; Barbosa, E. G.; Raffin, F. N.; Moura, T. F. A. L.; Baretto Gomes, A. P.; Ferrari, M.; Aragão, C. F. S. Compatibility Study between Hydroquinone and the Excipients Used in Semi-solid Pharmaceutical Forms by Thermal and Non-thermal Techniques. J. Therm. Anal. Calorim. 2015, 120(1): 719-732.
- [36] Li, X.; Lin, Q. H.; Zhao, X. Y.; Han, Z. W.; Wang, B. L. Compatibility of 2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane with a Selection of Insensitive Explosives. J. Energ. Mater. 2016, 35(2): 188-196.
- [37] Rojek, B.; Wesolowski, M.; Suchacz, B. Detection of Compatibility between Baclofen and Excipients with Aid of Infrared Spectroscopy and Chemometry. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2013, 116(12): 532-538.
- [38] Pereira, M. A. V.; Fonseca, G. D.; Silva-Júnior, A. A.; Fern,es-Pedrosa, M. F.; Barbosa, M. D. F. D. E.; Gomes, A. P. B.; Dos Santos, K. S. C. R. Compatibility Study between Chitosan and Pharmaceutical Excipients Used in Solid Dosage Forms. J. Therm. Anal. Calorim. 2014, 116(2): 1091-1100.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f84af89a-979b-47a2-96c1-beda1e842663