Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Determining the efficiency of complex fins is important when performing calculations involving heat exchangers with individual finned tubes or continuous fin heat exchangers, i.e., plate-fin and tube heat exchangers (PFTHEs). Usually, these are circular or rectangular fins mounted on circular, elliptical, oval tubes or flattened tubes. With PFTHEs, the continuous fin is divided into virtual fins, which are either rectangular for an inline pipe layout or hexagonal for a staggered pipe arrangement. Maximum fin temperature is also important in light of a possible burnout of the material, especially when heat transfer from hot gas to fin is considered. This paper presents a procedure based on the finite element method (FEM) for determining the efficiency and maximum temperature of fins of any shape placed on tubes of any shape. It presents examples of calculating the efficiency of virtual fins in the most commonly used PFTHEs. It also depicts the efficiency of a fin as a function of heat transfer coefficient for the commonest two geometries and two more complex geometries in PFTHEs.
Czasopismo
Rocznik
Tom
Strony
105--111
Opis fizyczny
Bibliogr. 11 poz., rys., wykr.
Twórcy
autor
- Cracow University of Technology
autor
- Cracow University of Technology
autor
- Cracow University of Technology
autor
- Cracow University of Technology
autor
- Warsaw University of Technology
Bibliografia
- 1. Taler, D., and Taler, J. (2014) Steady-state and transient heat transfer through fins of complex geometry. Archives of Thermodynamics, 35 (2), 117-133.
- 2. Sekulić, R.K.S.;D.P. (2007) Fundamentals of Heat Exchanger Design, John Wiley & Sons.
- 3. Schmidt, T.E. (1949) Heat transfer calculations for extended surfaces. Refrigeration Engineering, 351-357.
- 4. Osorio, J.D., Rivera-Alvarez, A., and Ordonez, J.C. (2017) Shape optimization of thin flat plate fins with geometries defined by linear piecewise functions. Applied Thermal Engineering, 112, 572-584.
- 5. Bury, T., and Hanuszkiewicz-Drapała, M. (2017) Experimental and computational analysis of ribbing structure modification effect in tube and fin cross-flow heat exchangers operating at non-uniform inflow of media. Journal of Power Technologies, 97, 429-436.
- 6. Hanuszkiewicz-Drapała, M., and and, K.W.T.B. (2013) Numerical model of a cross-flow heat exchanger with non-uniform flow of media. Journal of Power Technologies, 93, 295-302.
- 7. Thulukkanam, K. (2013) Exchanger Design Handbook, 2nd ed., CRC Press.
- 8. Suárez, F., Keegan, S.D., Mariani, N.J., and Barreto, G.F. (2019) A novel one-dimensional model to predict fin efficiency of continuous fin-tube heat exchangers. Applied Thermal Engineering, 149, 1192-1202.
- 9. Sathe, A., Sanap, S., Dingare, S., and Sane, N. (2021) Investigation of thermal performance of modified vertical rectangular fin array in free convection using experimental and numerical method. Materials Today: Proceedings, 38, 2281-2290.
- 10. Padmanabhan, S., Thiagarajan, S., Kumar, A.D.R., Prabhakaran, D., and Raju, M. (2021) Investigation of temperature distribution of fin profiles using analytical and CFD analysis. Materials Today: Proceedings, 44, 3550-3556.
- 11. Zhai, Z.J., Zhang, Z., Zhang, W., and Chen, Q.Y. (2007) Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 1-Summary of Prevalent Turbulence Models. HVAC&R Research, 13 (6), 853–870.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8441e92-a5e4-4d8a-8a7f-de7c932e470e