PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chlorpyrifos Removal from Aqueous Solutions by Emulsion Liquid Membrane: Stability, Extraction, and Stripping Studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current paper focuses on assessing key parameters affecting the extraction of Chlorpyrifos as well as emulsion stability using the emulsion liquid membrane technology. Five parameters affecting the extraction have been studied: homogenizer speed, emulsification time, agitating time, surfactant concentration, and stripping phase concentration taking into consideration the emulsion breaking. Experiments proved that using the resulting optimum values will maximize both extraction and stripping efficiencies (93.8% and 94.7% respectively), while minimizing the emulsion breakage (increasing the stability of emulsion) to 0.73% with no need to employ a carrier agent. A 10 min agitating time, 3% (v/v) Span 80 as a surfactant, 12700-rpm homogenizer speed, 0.25 M HCl as an internal phase concentration, and 5 min emulsification time are chosen to be the optimum parameters’ values. A study of extraction kinetics and estimation of mass transfer coefficient was also accomplished (3.89×10-9m/s). The conclusions of this work can be extended to the removal of other types of pesticides from water.
Rocznik
Strony
101--111
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Ahmad A.L., Kusumastuti A., Derek C.J.C., Ooi B.S. 2012. Emulsion liquid membrane for cadmium removal: Studies on emulsion diameter and stability. Desalination, 287, 30–34. https://doi.org/10.1016/j.desal.2011.11.002
  • 2. Ahmad A.L., Mohd Harun M.H.Z., Akmal Jasni M.K., Zaulkiflee N.D. 2021. Removal of Ibuprofen at Low Concentration Using a Newly Formulated Emulsion Liquid Membrane. Membranes (Basel), 11(10), 740. https://doi.org/10.3390/membranes11100740.
  • 3. Akhtar N., Srivastava M. K., Raizada R.B. 2009. Assessment of chlorpyrifos toxicity on certain organs in rat, Rattus norvegicus. J Environ Biol, 30(6), 1047-1053.
  • 4. Benderrag A., Djellali M., Haddou B., Daaou M., Bounaceur B. 2022. Experimental design and RSM on the recovery of Ni (II) ions by ELM using TX-100 as a biodegradable surfactant. Environ Technol., 3, 386-401. https://doi.org/10.1080/09593330.2020.1791967
  • 5. Buddin M.M.H.S., Salizan Ahmad N.D.S.M.N., Elha A.L., Rashidi A.R. 2019. Water-in-oil-in-water (W/O/W) emulsion instability in emulsion liquid membrane: membrane breakage. Journal of Physics, 1349-012106. https://doi.org/10.1088/1742-6596/1349/1/012106
  • 6. Chakraborty M., Bhattacharya C., Datta, S. 2010. Emulsion Liquid Membranes: Definitions and Classification, Theories, Module Design, Applications, New Directions and Perspectives. In Liquid Membranes Principles and Applications in Chemical Separations and Wastewater Treatment, Kislik, V.S. Elsevier Science: Amsterdam, 141−199.
  • 7. Costa R.O., Barcellos Canela P.S. 2018. Removal of pesticide residues after conventional drinking water treatment: byproducts and acetylcholinesterase inhibition. Eclética Química Journal, 43(2), 65-73. https://doi.org/10.26850/1678-4618eqj.v43.2.2018.p65-73
  • 8. Dâas A., Hamdaoui O. 2014. Removal of non-steroidal anti-inflammatory drugs ibuprofen and ketoprofen from water by emulsion liquid membrane. Environ. Sci. Pollut. Res, 21, 2154–2164. https://doi.org/10.1007/s11356-013-2140-9
  • 9. Díaz S.S., Al-Zubaidi H., Ross-Obare A.C., Obare S.O. 2020. Chemical reduction of chlorpyrifos driven by flavin mononucleotide functionalized titanium (IV) dioxide. Physical Sciences Reviews, 5, 11. https://doi.org/10.1515/psr-2020-0007
  • 10. Djenouhat M., Hamdaoui O., Chiha M., Samar M.H. 2008. Ultrasonication-Assisted Preparation of Water-in-Oil Emulsions And Application to the Removal Of Cationic Dyes From Water By Emulsion Liquid Membrane: Part 2: Permeation and Stripping. Sep. Purif. Technol, 63, 231−238. https://doi.org/10.1016/j.seppur.2008.05.005
  • 11. Ho W.S., Kamalesh K.S. 1992. Electrostatic Pseudo-Liquid- Membrane. In Membrane Handbook. Chapman & Hall, New York, 867−884.
  • 12. Hu J., Zou D., Chen J., Li D. 2020. A novel synergistic extraction system for the recovery of scandium (III) by Cyanex272 and Cyanex923 in sulfuric acid medium. Sep Purif Technol, 233, 115977. https://doi.org/10.1016/j.seppur.2019.115977
  • 13. Jusoh N., Othman N., Nasruddin N.A. 2016. Emulsion liquid membrane technology in organic acid purification. Malaysian Journal of Analytical Sciences, 20(2), 436-443. https://doi.org/10.17576/mjas-2016-2002-28
  • 14. Karcher V., Perrechil F., Bannwart A. 2015. Interfacial energy during the emulsification of water-in-heavy crude oil emulsions, Braz. J. Chem. Eng., 32, 127-137. https://doi.org/10.1590/0104-6632.20150321s00002696
  • 15. Kasaini H., Nakashio F., Goto M. 1998. Application of emulsion liquid membranes to recover cobalt ions from a dual-component sulphate solution containing nickel ions. J. Memb. Sci., 146, 159–168. https://doi.org/10.1016/S0376-7388(98)00105-7.
  • 16. Kohli H.P., Gupta S., Chakraborty M. 2019. Stability and performance study of emulsion nanofluid membrane: a combined approach of adsorption and extraction of Ethylparaben. Colloids Surf. A Physicochem. Eng. Asp., 579, 123675. https://doi.org/10.1016/j.colsurfa.2019.123675
  • 17. Laguel S., Samar M.H. 2019. Removal of Europium (III) from water by emulsion liquid membrane using Cyanex 302 as a carrier. Desalination and Water Treatment, 165, 269–280. https://doi.org/10.5004/dwt.2019.24551
  • 18. Laki S., Kargari, A. 2016. Extraction of silver ions from aqueous solutions by emulsion liquid membrane. J. Membr. Sci. Res. 2, 33–40. https://doi.org/10.22079/JMSR.2016.15876
  • 19. Marican A., Durán-Lara E.F. 2018. A review on pesticide removal through different processes. Environmental Science and Pollution Research, 25(3), 2051-2064. https://doi.org/10.1007/s11356-017-0796-2
  • 20. Mohammed A.A., Al-Khateeb R.W. 2022. Application of Emulsion Liquid Membrane Using Green Surfactant for Removing Phenol from Aqueous Solution: Extraction, Stability and Breakage Studies. J. Ecol. Eng., 23(1), 305–314. https://doi.org/10.12911/22998993/143970
  • 21. Mohammed A.A., Atiya M.A., Hussein M.A. 2020a. Simultaneous studies of emulsion stability and extraction capacity for the removal of tetracycline from aqueous solution by liquid surfactant membrane. Chemical Engineering Research and Design, 159, 225-235. https://doi.org/10.1016/j.cherd.2020.04.023
  • 22. Mohammed A.A., Selman H.M., Abukhanafer G. 2018. Liquid surfactant membrane for lead separation from aqueous solution: Studies on emulsion stability and extraction efficiency, Journal of Environmental Chemical Engineering 6, 6923-6930. https://doi.org/10.1016/j.jece.2018.10.021
  • 23. Mohammed A.A. 2007. Removal of Emulsified Paraffine from Water: Effect of Bubble Size and Particle Size on Kinetic of Flotation. Iraqi J. of Chem. Eng., (8)3, 1-5.
  • 24. Mohammed M.A., Noori W.O., Sabbar H.A. 2020b. Application of Emulsion Liquid Membrane Process for Cationic Dye Extraction. Iraqi Journal of Chemical and Petroleum Engineering, 21(3), 39-44. https://doi.org/10.31699/IJCPE.2020.3.5
  • 25. Muthusaravanan S., Priyadharshini S.V., Sivarajasekar N., Subashini R., Sivamani S., Dharaskar S., Dhakal N. 2019. Optimization and extraction of pharmaceutical micro-pollutant-norfloxacin using green emulsion liquid membranes. Desalination and water treatment, 156, 238-244. https://doi.org/10.5004/dwt.2019.23833
  • 26. Nandhini A.R., Muthukumar H., Gummadi S.N. 2021. Chlorpyrifos in environment and foods: A critical review of detection methods and degradation pathways. Environmental Science: Processes & Impacts, 23, 1255-1277. https://doi.org/10.1039/D1EM00178G
  • 27. Osman K.A., Al-Humaid A.I., Al-Redhaiman K.N., El-Mergawi R.A. 2014. Safety methods for chlorpyrifos removal from date fruits and its relation with sugars, phenolics and antioxidant capacity of fruits. Journal of food science and technology, 51(9), 1762-1772. https://doi.org/10.1007/s13197-012-0693-0
  • 28. Othman N., Noah N.F.M., Shu L.Y., Ooi Z.Y., Jusoh N., Idroas M., Goto M. 2017. Easy removing of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process. Chinese Journal of Chemical Engineering, 25(1), 45-52. https://doi.org/10.1016/j.cjche.2016.06.002
  • 29. Poling B.E., Prausnitz J.M., O’Connell J.P. 2001. The Properties of Gases and Liquids. Mcgraw-hill New York.
  • 30. Qurie M., Khamis M., Ayyad I., Scrano L., Lelario F., Bufo S.A., Karaman R. 2016. Removal of chlorpyrifos using micelle–clay complex and advanced treatment technology. Desalination and Water Treatment, 57(33), 15687-15696. https://doi.org/10.1080/19443994.2015.1096836
  • 31. Raji M., Abolghasemi H., Safdari J., Kargari A. 2018. Response surface optimization of dysprosium extraction using an emulsion liquid membrane integrated with multi-walled carbon nanotubes. Chem. Eng. Technol., 41, 1857–1870. https://doi.org/10.1002/ceat.201700351.
  • 32. Sabry R., Hafez A., Khedr M., El-Hassanin A. 2007. Removal of lead by an emulsion liquid membrane: Part I. Desalination, 212(1-3), 165-175. https://doi.org/10.1016/j.desal.2006.11.006
  • 33. Salman H.M., Mohammed A.A. 2019. Removal of Copper Ions from Aqueous Solution Using Liquid-Surfactant Membrane Technique. Iraqi Journal of Chemical and Petroleum Engineering 20(3), 31-37. https://doi.org/10.31699/IJCPE.2019.3.5
  • 34. Sheikhi S., Dehghanzadeh R., Maryamabadi A., Aslani H. 2021. Chlorpyrifos removal from aqueous solution through sequential use of coagulation and advanced oxidation processes: By-products, degradation pathways, and toxicity assessment. Environmental Technology & Innovation, 23, 101564. https://doi.org/10.1016/j.eti.2021.101564
  • 35. Shorki A., Daraei P., Zereshki S. 2020. Water decolorization using waste cooking oil: An optimized green emulsion liquid membrane by RSM. J. water process engineering, 33, 101021. https://doi.org/10.1016/j.jwpe.2019.101021
  • 36. Treybal R.E. 1981. Mass-Transfer Operations, 3rd ed., McGraw-Hill Book Co, Singapore.
  • 37. Ubaid ur Rahman H., Asghar W., Nazir W., Sandhu M.A., Ahmed A., Khalid N. 2021. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. Science of The Total Environment, 755, 142649. https://doi.org/10.1016/j.scitotenv.2020.142649
  • 38. Zhu H., Yu X., Xu Y., Yan B., Bañuelos G., Shutes B., Wen Z. 2021. Removal of chlorpyrifos and its hydrolytic metabolite in microcosm-scale constructed wetlands under soda saline-alkaline condition: Mass balance and intensification strategies. Science of The Total Environment, 777, 145956. https://doi.org/10.1016/j.scitotenv.2021.145956
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f83d05cf-52bb-4a5d-8f32-ec27092c3545
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.