Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The Pomerania Gravity Low is a regular large-amplitude, oval anomaly of disputable origin located at the East European Craton margin. In the past it has been interpreted as a Proterozoic crustal keel or an Early Paleozoic/Permian-Mesozoic depocentre. The origin of the anomaly has been reconsidered based on a reinterpretation of previous potential fields, seismic and magnetotelluric data and recent gravimetric modelling results. New alternative interpretations are proposed and discussed, namely a felsic intrusion related to the Transscandinavian Igneous Belt and a large impact structure dating to 〜1.6-1.8 Ga. The data assembled, together with regional comparisons, make the impact origin seem more probable. Nevertheless, prolonged erosion, deep burial and a metamorphic overprint hamper testing of this hypothesis, e.g., through finding impact ejecta or shock-affected minerals.
Czasopismo
Rocznik
Tom
Strony
art. no. 2
Opis fizyczny
Bibliogr. 67 poz., rys., tab.
Twórcy
autor
- Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
autor
Bibliografia
- 1. Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L., Kurlovich, D., 2015. Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna. Precambrian Research, 259: 5-33; https://doi.org/10.1016/j.precamres.2014.11.023
- 2. Dadlez, R., 1978. Sub-Permian rock complexes in the Koszalin-Chojnice Zone (in Polish with English summary). Geological Quarterly, 22 (2): 269-301.
- 3. Dadlez, R., 2001. Mid-Polish Trough - Geological Cross-sections (1:200 000). Państwowy Instytut Geologiczny, Warszawa.
- 4. Dadlez, R., Kowalczewski, Z., Znosko, J., 1994. Some key problems of the pre-Permian Tectonics of Poland. Geological Quarterly, 38 (2): 169-190.
- 5. Dadlez, R., Narkiewicz, M., Stephenson, R.A., Visser, M.T.M., van Wees J.D., 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 252: 179-195; https://doi.org/10.1016/0040-1951(95)00104-2
- 6. Dadlez, R., Marek, S., Pokorski, J., 1998. Paleogeographic Atlas of Epicontinental Permian and Mesozoic in Poland (1:2 500 000). Państwowy Instytut Geologiczny, Warszawa. Dadlez, R., Grad, M., Guterch, A., 2005. Crustal structure below the Polish Basin: Is it composed of proximalterlanes derived from Baltica? Tectonophysics, 411: 111-28; https://doi.org/10.1016/j.tecto.2005.09.004
- 7. Demaiffe, D., Wiszniewska, J., Krzemińska, E., Williams, I.S., Stein, H., Brassines, S., Ohnenstetter, D., Deloule, E., 2013. A hidden alkaline and carbonatite province of Early Carboniferous age in Northeast Poland: Zircon U-Pb and pyrrhotite Re-Os geochronology. Journal of Geology, 121: 91-104; https://doi.org/10.1086/668674
- 8. Ernst, T., Brasse, H., Cerv, V., Hoffmann, N., Jankowski, J., Jozwiak, W., Kreutzmann A., Neska, A., Palshin, N., Pedersen, L.B., Smirnov, M., Sokolova, E., Varentsov, I. M., 2008. Electromagnetic images of the deep structure of the Trans-European Suture Zone beneath Polish Pomerania. Geophysical Research Letters, 35: L15307; https://doi.org/10.1029/2008GL034610
- 9. Fajklewicz, Z., 1964. Depth of the Mohorovičić discontinuity in Poland (in Polish). Technika Poszukiwań, 10: 6-11.
- 10. French, B.M., Koeberl, Ch., 2010. The convincing identification of terrestrial meteorite impact structures: what works, what doesn't, and why. Earth-Science Reviews, 98: 123-170; https://doi.org/10.1016/j.earscirev.2009.10.009
- 11. Gilder, S., Pohl, J., Eitel, M., 2018. Magnetic signatures of terrestrial meteorite impact craters: A summary. In: Magnetic fields in the solar system (eds. H. Luhr, J. Wicht, S. Gilder and M. Holschneider): 357-382. Springer, Cham; https://doh10.1007/978-3-319-64292-5_13
- 12. Gorbatschev, R., 2004. The Transscandinavian Igneous Belt - introduction and background. Geological Survey of Finland, Special Paper, 37: 9-15.
- 13. Grabowska, T., Raczyńska, M., 1991. Structure of the Earth crust in the Polish Lowland in the light of gravimetric modelling. Publications of the Institute of Geophysics, Polish Academy of Science, A-19: 85-110.
- 14. Grabowska, T., Raczyńska, M., Dolnicki, J., 1992. Interpretation of gravity anomalies along the Eu-3 Geotransect in Poland. Acta Geophysica Polonica, 40: 159-173.
- 15. Grabowska, T., Bojdys, G., Dolnicki, J., 1998. Three-dimensional density model of the Earth's crust and the upper mantle for the area of Poland. Journal of Geodynamics, 25: 5-24; https://doi.org/10.1016/S0264-3707(97)00001-X
- 16. Grieve, R.A.F., Reimold, U., Morgan, J., Riller, U., Pilkington, M., 2008. Observations and interpretations at Vredefort, Sudbury, and Chicxulub: toward an empirical model of terrestrial impact basin formation. Meteorics and Planetary Science, 43: 855-882; https://doi.org/10.1111/j.1945-5100.2008.tb01086.x
- 17. Grobelny, A., Królikowski, C., 1988. Gravimetric anomalies caused by sub-Permian sediments in northwestern Poland (in Polish with English summary). Geological Quarterly, 32 (3/4): 611-634.
- 18. Guterch, A., Grad, M., 2006. Lithospheric structure of the TESZ in Poland based on modern seismic experiments. Geological Quarterly, 50 (1): 23-32.
- 19. Guy, A., Edel, J.-B., Schulmann, K., Tomek, Č., Lexa, O., 2011. A geophysical model of the Variscan orogenic root (Bohemian Massif): Implications for modern collisional orogens. Lithos, 124: 144-157; https://doi.org/10.1016/j.lithos.2010.08.008
- 20. Henkel, H., Reimold, W.U., 1998. Integrated geophysical modelling of a giant, complex impact structure: anatomy of the Vredefort Structure, South Africa. Tectonophysics, 287: 1-20; https://doi.org/10.1016/S0040-1951(98)80058-9
- 21. Henkel, H., Reimold, W.U., 2002. Magnetic model of the central uplift of the Vredefort impact structure, South Africa. Journal of Applied Geophysics, 51: 43-62; https://doi.org/10.1016/S0926-9851(02)00214-8
- 22. Högdahl, K., Andersson, U.B., Eklund, O. (eds.), 2004. The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland, Special Paper, 37.
- 23. Huestis, S.P., Ander, E., 1983. IDB2 - a Fortran program for computing extremal bounds in gravity data interpretation. Geophysics, 47: 999-1010.
- 24. Jóźwiak, W., 2013. Electromagnetic study of lithospheric structure in the marginal zone of East European Craton in NW Poland. Acta Geophysica, 61: 1101-1129; https://doi.org/10.2478/s11600-013-0127-z
- 25. Juhlin, C., Pedersen, L. B., 1987. Reflection seismic investigations of the Siljan impact structure, Sweden. Journal of Geophysical Research: Solid Earth, 92(B13): 14113-14122; https://doi.org/10.1029/JB092iB13p14113
- 26. Juhojuntti, N., Juhlin, C., 1998. Seismic lower crustal reflectivity and signal penetration in the Siljan Ring area, Central Sweden. Tectonophysics, 288: 17-30; https://doi.org/10.1016/S0040-1951(97)00279-5
- 27. Juhojuntti, N., Juhlin, C., Dyrelius, D., 2001. Crustal reflectivity underneath the Central Scandinavian Caledonides. Tectonophysics, 334: 191-210; https://doi.org/10.1016/S0040-1951(00)00292-4
- 28. Królikowski, C., Petecki, Z., 1995. Gravimetric Atlas of Poland. Polish Geological Institute, Warszawa.
- 29. Królikowski, C., Petecki, Z., 1997. Crustal structure at the Trans-European Sulure Zone in northwest Poland based on gravity data. Geological Magazine, 134: 661-667; https://doi.org/10.1017/S0016756897007395
- 30. Królikowski, C., Petecki, Z., 2002. Lithospheric structure across the Trans-European Suture Zone in NW Poland based on gravity data interpretation. Geological Quarterly, 46 (3): 235-245.
- 31. Królikowski, C., Petecki, Z., Żółtowski, Z., 1998. Main structural units in the Polish part of the East-European Platform in the light of gravimetric data (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 386: 5-58.
- 32. Krzemińska, E., Krzemiński, L., Petecki, Z., Wiszniewska, J., Salwa, S., Żaba, J., Gaidzik, K., Williams, I.S., Rosowiecka, O., Taran, L., Johansson, Å., Pecskay, Z., Demaiffe, D., Grabowski, J., Zieliński, G., 2017. Geological Map of Crystalline Basement in the Polish part of the East European Platform 1:1 000 000. Państwowy Instytut Geologiczny, Warszawa.
- 33. Krzemińska, E., Johansson, Å.E., Krzemiński, L., Wiszniewska, J., Williams, I.S., Petecki, Z., Salwa, S., 2021. Basement correlation across the southernmost Baltic Sea: Geochemical and geochronological evidence from onshore and offshore deep drill cores, northern Poland. Precambrian Research, 362: 106300; https://doi.org/10.1016/j.precamres.2021.106300
- 34. Kubicki, S., Ryka., W. (eds.), 1982. Geological Atlas of Crystalline Basement in Polish Part of East-European Platform. Państwowy Instytut Geologiczny, Warszawa.
- 35. Majdański, M., 2012. The structure of the crust in TESZ area by kriging interpolation, Acta Geophysica, 60: 59-75; https://doi.org/10.2478/s11600-011-0058-5
- 36. Masaitis, V.L., Mashchak, M.S., Naumov, M.V., 2019. Main geological features of the impact structure. In: Popigai impact structure and its diamond-bearing rocks (ed. V.L. Masaitis): 1-17. Springer, Cham, Switzer land; https://doi.org/10.1007/978-3-319-77988-1_1
- 37. Masero, W., Fischer, G., Schnegg, P.A., 1997. Electrical conductivity and crustal deformation from magnetotelluric results in the region of the Araguainha impact, Brazil. Physics of the Earth and Planetary Interiors, 101: 271-289; https://doi.org/10.1016/S0031-9201(96)03267-0
- 38. Mazur, S., Mikołajczak, M., Krzywiec, P., Malinowski, M., Buffenmyer, V., Lewandowski, M., 2015. Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica? Tectonics, 34: 2465-2477; https://doi:10.1002/2015TC003934
- 39. Mazur, S., Mikołajczak, M., Krzywiec, P., Malinowski, M., Buffenmyer, V., Lewandowski, M., 2016. Reply to Comment by M. Narkiewicz and Z. Petecki on “Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica?” Tectonics, 35: 1600-1607; https://doi: 10.1002/2015TC003934
- 40. Mężyk, M., Malinowski, M., Mazur, S., 2019. Imaging East European Craton margin in Northern Poland using extended-correlation processing applied to regional reflection seismic profiles. Solid Earth, 10: 683-696; https://doi.org/10.5194/se-10-683-2019
- 41. Młynarski, S., Bachan, W., Dąbrowska, B., Jankowski, H., Kaniewska, E., Karaczun, K., Kozera, A., Marek, S., Skorupa, J., Żelichowski, A.M., Żytko, K., 1982. Geophysical-geological interpretations along the profiles of Lubin-Prabuty, Przedbórz-Żebrak, Baligród-Dubienka (in Polish with English summary). Biuletyn Instytutu Geologicznego, 333: 5-60.
- 42. Muundjua, M., Hart, R. J., Gilder, S. A., Carporzen, L., Galdeano, A., 2007. Magnetic imaging of the Vredefort impact crater, South Africa. Earth and Planetary Science Letters, 261: 456-468; https://doi.org/10.1016/j.epsl.2007.07.044
- 43. Narkiewicz M., 2020 - The Variscan foreland in Poland revisited: new data and new concepts. Geological Quarterly, 64 (2): 377-401; https://dx.doi.org/10.7306/gq.1511
- 44. Narkiewicz, M., Petecki, Z., 2016. Comment on “Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica ?” by Mazur etal. Tectonics, 35: 1595-1599; https://doi:10.1002/2016TC004127
- 45. Narkiewicz, M., Petecki, Z., 2017. Basement structure of the Paleozoic Platform in Poland. Geological Quarterly, 61 (4): 502-520; https://doi.org/10.7306/gq.1356
- 46. Narkiewicz, M., Petecki, Z., 2019. Teisseyre-Tornquist Zone - evolving approches and new data (in Polish with English abstract). Przegląd Geologiczny, 67: 837-848; https://doi.org/10.7306/2019.48
- 47. Narkiewicz, M., Maksym, A” Malinowski, M., Grad, M., Guterch, A., Petecki, Z., Probulski, J., Janik, T., Majdański, M., Środa, P., Czuba, W., Gaczyński, E., Jankowski, L., 2015. Transcurrent nat ure of the Teisseyre-Tornquist Zone in Central Europe - results of the POLCRUST-01 deep reflection seismic profile. International Journal of Earth Sciences, 104: 775-796; https://doi.org/10.1007/s00531-014-1116-4
- 48. Oryński, S., Klityński W., Neska A., Ślęzak, K., 2019. Deep lithospheric structure beneath the Polish part of the East European Craton as a result of magnetotelluric surveys. Studia Geophysica et Geodaetica, 63: 273-289; https://doi.org/10.1007/s11200-017-1264-7
- 49. Osinski, G.R., Grieve, R.A., Ferriere, L., Losiak, A., Pickersgill, A., Cavosie, A.J., Hibbard, S.M., Hill, P.J.A., Bermudez, J.J., Marion, C.L., Newman, J.D., Simpson, S.L., 2022. Impact Earth: a review of the terrestrial impact record. Earth-Science Reviews, 232: 104112; https://doi.org/10.1016/j.earscirev.2022.104112
- 50. Parker, R.L., 1974. Best bounds on density and depth from gravity data. Geophysics, 39: 644-649.
- 51. Parker, R.L., 1975. The theory of ideal bodies for gravity interpretation. Geophysical Journal of the Royal Astronomical Society, 42: 315-334.
- 52. Pascal, C., Ebbing, J., Skilbrei, J.R., 2007. Interplay between the Scandes and the Trans-Scandinavian Igneous Belt: integrated thermo-rheological and potential field modelling of the Central Scandes profile. Norwegian Journal of Geology, 87: 3-12.
- 53. Pesonen, L.J., 1996. The impact cratering record of Fennoscandia. Earth, Moon, and Planets, 72: 377-393; https://doi.org/10.1007/BF00117542
- 54. Petecki, Z., 2002. Gravity and magnetic modeling along LT-7 profile (in Polish). Przegląd Geologiczny, 50: 630-633.
- 55. Petecki, Z., 2008. Magnetic basement in the Pomeranian segment of the Trans-European Suture Zone (NW Poland) (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 191: 5-72.
- 56. Petecki, Z., 2019. Ideal body analysis of the Pomerania Gravity Low (northern Poland). Geological Quarterly, 63 (3): 558-567; http://dx.doi.org/10.7306/gq.1485
- 57. Petecki, Z., Rosowiecka, O., 2017. A new magnetic anomaly map of Poland and its contribution to the recognition of crystalline basement rocks. Geological Quarterly, 61 (4): 934-945; http://dx.doi.org/10.7306/gq.1383
- 58. Petecki, Z., Wiszniewska, J., 2021. Internal structure of the buried Suwałki Anorthosite Massif (East European Craton, NE Poland) based on borehole, magnetic and gravity data combined with new petrological results. Geological Quarterly, 65:4; http://dx.doi.org/10.7306/gq.1574
- 59. Pilkington, M., Grieve, R.A.F., 1992. The geophysical signature of terrestrial impact craters. Reviews in Geophysics, 30:161-181; https://doi.org/10.1029/92RG00192
- 60. Pilkington, M., Pesonen, L.J., Grieve, R.A.F., Masaitis, V.L., 2002. Geophysics and petrophysics of the Popigai impact structure, Siberia. In: Impact in Precambrian shields (eds. J. Plado and L.J. Pesonen): 87-107. Springer, Berlin-Heidelberg.
- 61. Reimold, W.U., 2007. The Impact Crater Bandwagon (Some problems with the teriesirial impact cratering record). Meteoritics and Planetary Science, 42: 1467-1472.
- 62. Stefaniuk, M., Wojdyła, M., Petecki, Z. Pokorski, J., 2008. Dokumentacja badań geofizycznych. Temat: Budowa geologiczna pokrywy osadowej i podłoża krystalicznego segmentu pomorskiego bruzdy śródpolskiej na podstawie kompleksowych badań geofizycznych (profilowań magnetotellurycznych). Etap I: 2007-2008 (in Polish). Unpubl. documentation of geophysical surveys, National Geological Archives. Polish Geological Institute-National Research Institute. Warsaw. Document no. CBDG 949963.
- 63. Therriault, A.M., Grieve R.A.F., Pilkington M., 2002. The recognition of terrestrial impact structures. Bulletin of the Czech Geological Survey, 77: 253-263.
- 64. Therriault, A.M., Reid, A.M., Reimold, W.U., 1993. Origin of the Vredefort structure, South Africa: Impact model, Lunar and Planetary Science XXIV, p. 1421-1422, In Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z p 1421-1422 (SEE N94-20636 05-91).
- 65. Wilde-Piórko, M., Świeczak, M., Grad, M., Majdański, M., 2010. Integrated seismic model of the crust and upper mantle of the Trans-European Suture zone between the Precambrian craton and Phanerozoic terranes in central Europe. Tectonophysics, 481: 108-115; https://doi.org/10.1016/j.tecto.2009.05.002
- 66. Zhang, P., Rasmussen, T.M., Pedersen, L.B., 1988. Electric resistivity structure of the Siljan impact region. Journal of Geophysical Research, 93: 6485-6501; https://doi.org/10.1029/JB093iB06p06485
- 67. Znosko, J., 1998. Tectonic Atlas of Poland. Państwowy Instytut Geologiczny, Warszawa.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f83b2e7d-9991-400f-b457-daadae121ac0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.