Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper was to compare two different processes of rapid design and fabrication of personalized ankle orthoses using FDM technology. The intention was to assess the suitability of orthoses designed in a short time for practical use. The first tool used was the online platform Mecuris, while the second was an auto-generative model implemented into the Inventor software, developed within the AutoMedPrint project framework. Low-budget 3D scanners were employed to collect data for obtaining anthropometric measurements of patients, which were utilized for precise design of personalized orthoses. Several patients, volunteers, were selected for the conducted research. Orthoses for the patients were designed using both tools. The orthoses fabrication process was conducted using various printers and materials such as PET-G and PLA. As a result of the conducted work, three orthoses designed using the Mecuris platform and one utilizing the auto-generative model were obtained, and their fitting and functionality were positively verified. The analysis conducted on the advantages and disadvantages of both programs allowed for the conclusion that combining the capabilities of these tools would be an optimal solution. The automation of the design process significantly influenced the customization potential of orthoses to meet the needs of each patient.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
346--359
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
autor
- Poznan University of Technology, plac Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
autor
- Poznan University of Technology, plac Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
autor
- Poznan University of Technology, plac Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
autor
- Poznan University of Technology, plac Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
autor
- Poznan University of Technology, plac Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
autor
- Poznan University of Technology, plac Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
Bibliografia
- 1. Wichniarek R., Górski F., Kuczko W., Żukowska M. Accuracy and repeatability of limb scans obtained on the semi-automatic measuring station. Advances in Science and Technology Research Journal, 2020; 14(4): 220–228. doi: 10.12913/22998624/127011.
- 2. Górski F., Denysenko Y., Kuczko W., Żukowska M., Wichniarek R., Zawadzki P., Rybarczyk J. Individualized 3D printed orthopaedic and prosthetic devices using AutoMedPrint technology – Methodologies and examples. Advances in Science and Technology Research Journal, 2024; 18(6): 145–158. doi: 10.12913/22998624/191548.
- 3. Górski F., Wichniarek R., Kuczko W., Żukowska M., Lulkiewicz M., Zawadzki P. Experimental studies on 3D printing of automatically designed customized wrist-hand orthoses. Materials, 2020; 13(18). doi: 10.3390/ma13184091.
- 4. Górski F., Kuczko W., Wichniarek R., Górski F., Żukowska M. Design and additive manufacturing of an individualized specialized leg orthosis. 2022. doi: 10.1007/978-3-031-52382-3_7.
- 5. Batkuldinova K., Abilgaziyev A., Shehab E., Hazrat Ali M. The recent development of 3D printing in developing lower-leg exoskeleton: A review. Materials Today: Proceedings, 2021; Elsevier Ltd: 1822–1828. doi: 10.1016/j.matpr.2020.12.191.
- 6. Raj R., Dixit A.R., Łukaszewski K., Wichniarek R., Rybarczyk J., Kuczko W., Górski F. Numerical and experimental mechanical analysis of additively manufactured ankle–foot orthoses. Materials, 2022; 15(17). doi: 10.3390/ma15176130.
- 7. Desmyttere G., Leteneur S., Hajizadeh M., Bleau J., Begon M. Effect of 3D printed foot orthoses stiffness and design on foot kinematics and plantar pressures in healthy people. Gait & Posture, 2020; 81: 247–253. doi: 10.1016/j.gaitpost.2020.07.146.
- 8. Silva R., Morouço P., Lains J., Amorim P., Alves N., Veloso A.P. Innovative design and development of personalized ankle-foot orthoses for survivors of stroke with equinovarus foot: Protocol for a feasibility and comparative trial. JMIR Research Protocols, 2024; 13(1). doi: 10.2196/52365.
- 9. Ferraresi C., et al. A methodology for the customization of hinged ankle-foot orthoses based on in vivo helical axis calculation with 3D printed rigid shells. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2021; 235(4): 367–377. doi: 10.1177/0954411920981543.
- 10. Caravaggi P., Zomparelli A., Rogati G., Baleani M., Fognani R., Cevolini F., Fanciullo C., et al. Development of a novel, passive-dynamic, custom AFO for drop-foot patients: Design principles, manufacturing technique, mechanical properties characterization, and functional evaluation. Applied Sciences, 2022; 12(9). doi: 10.3390/app12094721.
- 11. Mavroidis C., Ranky R.G., Sivak M.L., Patritti B.L., DiPisa J., Caddle A., Gilhooly K., Govoniet L., et al. Patient-specific ankle-foot orthoses using rapid prototyping. Journal of NeuroEngineering and Rehabilitation, 2011; 8(1). doi: 10.1186/1743-0003-8-1.
- 12. Walbran M., Turner K., McDaid A.J. Customized 3D printed ankle-foot orthosis with adaptable carbon fibre composite spring joint. Cogent Engineering, 2016; 3(1). doi: 10.1080/23311916.2016.1227022.
- 13. Banga H.K., Kalra P., Belokar R.M., Kumar R. Customized design and additive manufacturing of kids’ ankle foot orthosis. Rapid Prototyping Journal, 2020; 26(10): 1677–1685. doi: 10.1108/RPJ-07-2019-0194.
- 14. Górski F., Kuczko W., Weiss W., Wichniarek R., Żukowska M. Prototyping of an individualized multi-material wrist orthosis using fused deposition modelling. Advances in Science and Technology Research Journal, 2019; 13(4): 39–47. doi: 10.12913/22998624/113543.
- 15. Behforootan S., Chatzistergos P.E., Eddison N., Chockalingam N. Optimising rigid ankle foot orthoses design: A quantitative evaluation of trimlines on stiffness. The Foot, 2025; 62: 102158. doi: 10.1016/j.foot.2025.102158.
- 16. Patel P., Gohil P. Custom orthotics development process based on additive manufacturing. Materials Today: Proceedings, 2022; 59: A52–A63. doi: 10.1016/j.matpr.2022.04.858.
- 17. Fang J.J., Lin C.L., Tsai J.Y., Lin R.M. Clinical assessment of customized 3D-printed wrist orthoses. Applied Sciences, 2022; 12(22). doi: 10.3390/app122211538.
- 18. Ackland D.C., Robinson D., Redhead M., Lee P.V.S., Moskaljuk A., Dimitroulis G. A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation. Journal of the Mechanical Behavior of Biomedical Materials, 2017; 69: 404–411. doi: 10.1016/j.jmbbm.2017.01.048.
- 19. Putra A.P., et al. Finite element analysis of ventral ankle-foot orthosis under cuff and ground reaction force loading. Mathematical Modelling of Engineering Problems, 2024; 11(3): 673–679. doi: 10.18280/mmep.110311.
- 20. Maintz M., Tourbier C., de Wild M., Cattin P.C., Beyer M., Seiler D., Honigmann P., Sharma N., et al. Patient-specific implants made of 3D printed bioresorbable polymers at the point-of-care: Material, technology, and scope of surgical application. 3D Printing in Medicine, 2024; 10(1). doi: 10.1186/s41205-024-00207-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8343db5-8b5d-44d3-98ce-3df84c867efb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.