PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Hydrogen Embrittlement of Haynes 617 and Hastelloy X Alloys Using Electrochemical Hydrogen Charging

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study explores the hydrogen embrittlement behaviour of two Ni-based superalloys using electrochemical hydrogen charging. Two types of tensile specimens with different geometry for the Haynes 617 and Hastelloy X alloys were electrochemically hydrogen-charged, and then a slow strain rate test was conducted to investigate the hydrogen embrittlement behaviour. Unlike the ASTM standard specimens, two-step dog-bone specimens with a higher surface-area-to-volume ratio showed higher sensitivity to hydrogen embrittlement because hydrogen atoms are distributed mostly on the surface area. On the other hand, the Haynes 617 alloy had a lower hydrogen embrittlement resistance than that of the Hastelloy X alloy due to its relatively large grain size and the presence of precipitates at grain boundaries. The Haynes 617 alloy primarily showed an intergranular fracture mode with cracks from the slip band, whereas the Hastelloy X alloy exhibited a combination of transgranular and intergranular fracture behavior under hydrogen-charged conditions.
Twórcy
autor
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
autor
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
Bibliografia
  • [1] A. Poullikka, Renewable Sustainable Energy Rev. 9, 409-443 (2005).
  • [2] S.Y. Lee, S.I. Lee, J. Han, B. Hwang, Mater. Sci. Eng. A 711, 22-28 (2019).
  • [3] S. Omano, M. Cerutti, G. Riccio, A. Andreini, C. Romano, J. Eng. Gas Turbines Power 141, 114501 (2019).
  • [4] S.I. Lee, S.W. Lee, S.G. Lee, H.G. Jung, B. Hwang, Met. Mater. Int. 24, 1221-1231 (2018).
  • [5] Superalloys for gas turbine engines, Introduction to Aerospace Materials 12, 251-267 (2012).
  • [6] S.I. Lee, S.Y. Lee, B. Hwang, Mater. Sci. Eng. 742, 334-343 (2019).
  • [7] T. Neeraj, R. Srinivasan, J. Li, Acta Mater. 60, 13-14 (2012).
  • [8] K. Park, D.H. Cho, M.H. Park, C.W. Yang, Kor. J. Met. Mater. 57, 405-411 (2019).
  • [9] P. Gobbato, M. Masi, A. Toffolo, A. Lazzaretto, Int. J. Hydrog. Energy 36, 7993-8002 (2011).
  • [10] E. Ma, S. Park, H. Choi, B. Hwang, J. Byun, J. Powder Mater. 30, 217-222 (2023)
  • [11] F. Lecoester, J. Chênea, D. Noel, Mater. Sci. Eng. A 262, 173-183 (1999).
  • [12] T.W. Hong, S.I. Lee, J.H. Shim, M.G. Lee, J. Lee, B. Hwang, Met. Mater. Int. 27, 3935-3944 (2021).
  • [13] Z. Zhang, K.L. Moore, G. McMahon, R. Morana, M. Preuss, Corros. Sci. 146, 58-69 (2019).
  • [14] A. Nagao, K. Hayashi, K. Oi, S. Mitao, ISIJ Int. 52, 213-221 (2012).
  • [15] Z. Wang, M. Huang, Metals 10, 1585 (2020).
  • [16] R. Karmakar, P. Maji, S.K. Ghosh, Met. Mater. Int. 27, 2134-2145 (2021).
  • [17] D. Wang, X. Lu, D. Wan, X. Guo, T. Johnsen, Metall. Mater. Trans. A 802, 140638 (2021).
  • [18] X. Lu, Y. Ma, D. Wang, Mater. Sci. Eng. A 792, 139785 (2020).
  • [19] T.S. Jo, J.H. Lim, Y.D. Kim, J. Nucl. Mater. 406, 360-364 (2010).
  • [20] D.P. Escobar, C. Miñambres, L. Duprez, K. Verbeken, M. Verhaege, Corros. Sci. 53, 3166-3176 (2011).
  • [21] X. Lu, D. Wang, D. Wan, Z. B. Zhang, N. Kheradmand, A. Barnoush, Acta Mater. 179, 36-48 (2019).
  • [22] A. Aghajani, J. Tewes, A.B. Parsa, T. Hoffmann, A. Kostka, J. Kloewer, Metall. Mater. Trans. A 47, 4382-4392 (2016).
  • [23] C. Park, N. Kang, S. Liu, Corros. Sci. 128, 33-41 (2017).
  • [24] H. Yang, T.T. Nguyen, J. Park, H.M. Heo, J. Lee, U.B. Baek, Y.K. Lee, Met. Mater. Int. 234, (2022).
  • [25] M. Sundararaman, P. Mukhopadhyay, S. Banerjee, Acta Metall. 36, 847-864 (1988).
  • [26] R. Kirchheim, Acta Mater. 55, 5129-5138 (2007).
  • [27] V. Demetriou, J.D. Robson, M. Preuss, R. Morana, Int. J. Hydrog. Energy 42, 23856-23870 (2017).
  • [28] S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A 758, 56-59 (2019).
Uwagi
This research was supported by Korea Electric Power Corporation. (Grant number: R21XO02-6) and by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2022R1A2C2004834).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f833404e-9db0-4d2c-842e-b3275a599d00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.