Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
There are higher requirements for microstructures and high-precision components in microelectronics, photonics, sensors, optoelectronics and medical devices. For changing the traditional manufacturing methods with cumbersome process and complex equipment, researchers put forward a laser shock forming technique which can contribute to the metal forming with high precision and efficiency in recent years. So far, the laser shock forming needed high pulse energy and high energy. In this paper, nanosecond laser with high frequency and low pulse energy was adopted to make possible the aluminum foil forming on the copper micro-molds with different sizes and shapes. The deformations of aluminum foil were measured by SEM, optical profiler and AFM. Also, the deformation laws were analyzed by comparing imprinting results under different micro-molds. Lastly, stress distribution and deformation process of aluminum foil was investigated by numerical simulations.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
671--686
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, China University of Mining and Technology, Xuzhou, 221116, China
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA
autor
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China
autor
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China
Bibliografia
- [1] CHENG G.J., PIRZADA D., ZHOU MING, Microstructure and mechanical property characterizations of metal foil after microscale laser dynamic forming, Journal of Applied Physics 101(6), 2007, article ID 063108.
- [2] OCAÑA J.L., MORALES M., PORRO J.A., GARCÍA-BALLESTEROS J.J., CORREA C., Laser shock microforming of thin metal sheets with ns lasers, Physics Procedia 12, 2011, pp. 201–206.
- [3] CUNJIANG YU, HUANG GAO, HONGYU YU, HANQING JIANG, CHENG G.J., Laser dynamic forming of functional materials laminated composites on patterned three-dimensional surfaces with applications on flexible microelectromechanical systems, Applied Physics Letters 95(9), 2009, article ID 091108.
- [4] HUIXIA LIU, ZONGBAO SHEN, XIAO WANG, HEJUN WANG, MAOKE TAO, Micromould based laser shock embossing of thin metal sheets for MEMS applications, Applied Surface Science 256(14), 2010, pp. 4687–4691.
- [5] ZONGBAO SHEN, CHUNXING GU, HUIXIA LIU, XIAO WANG, YANG HU, Fabricating three-dimensional array features on metallic foil surface using overlapping laser shock embossing, Optics and Lasers in Engineering 51(8), 2013, pp. 973–977.
- [6] ECHTERMEYER T.J., BRITNELL L., JASNOS P.K., LOMBARDO A., GORBACHEV R.V., GRIGORENKO A.N., GEIM A.K., FERRARI A.C., NOVOSELOV K.S., Strong plasmonic enhancement of photovoltage in graphene, Nature Communications 2, 2011, p. 458.
- [7] SCHULLER J.A., BARNARD E.S., WENSHAN CAI, YOUNG CHUL JUN, WHITE J.S., BRONGERSMA M.L., Plasmonics for extreme light concentration and manipulation, Nature Materials 9(3), 2010, pp. 193–204.
- [8] NINGGANG SHEN, PENCE C.N., BOWERS R., YIN YU, HONGTAO DING, STANFORD C.M., OZBOLAT I.T., Surface micro-scale patterning for biomedical implant material of pure titanium via high energy pulse laser peening, ASME 2014 International Manufacturing Science and Engineering Conference, 2014, article ID V002T02A099.
- [9] SEUNGHYUN LEE, PRASHANT KUMAR, YAOWU HU, CHENG G.J., IRUDAYARAJ J., Graphene laminated gold bipyramids as sensitive detection platforms for antibiotic molecules, Chemical Communications 51(85), 2015, pp. 15494–15497.
- [10] CHUANG QIAN, CHAO NI, WENXUAN YU, WENGANG WU, HAIYANG MAO, YIFEI WANG, JUN XU, Highly-ordered, 3D petal-like array for surface-enhanced Raman scattering, Small 7(13), 2011, pp. 1801–1806.
- [11] JIAXIANG MAN, HAIFENG YANG, YANQING WANG, CHENG YAN, SHANQING ZHANG, Nanotribological properties of nanotextured Ni-Co coating surface measured with AFM colloidal probe technique, Journal of Laser Micro/Nanoengineering 12(1), 2017, pp. 16–21.
- [12] HAIFENG YANG, HAIDONG HE, ENLAN ZHAO, JINBIN HAO, JIGUO QIAN, WEI TANG, HUA ZHU, Electroniccontrolling nanotribological behavior of textured silicon surfaces fabricated by laser interference lithography, Laser Physics Letters 11(10), 2014, article ID 105901.
- [13] HAIFENG YANG, TIANCHI CHEN, JIGUO QIAN, JING HAN, HAIDONG HE, LONGPENG ZHOU, ENLAN ZHAO, WEI TANG, HUA ZHU, Friction-reducing micro/nanoprotrusions on electrodeposited Ni-Co alloy coating surface fabricated by laser direct writing, Bulletin of Materials Science 38(1), 2015, pp. 173–181.
- [14] CHAO ZHENG, SHENG SUN, ZHONG JI, WEI WANG, Effect of laser energy on the deformation behaviour in microscale laser bulge forming, Applied Surface Science 257(5), 2010, pp. 1589–1595.
- [15] JI LI, HUANG GAO, CHENG G.J., Forming limit and fracture mode of microscale laser dynamic forming, Journal of Manufacturing Science and Engineering 132(6), 2010, article ID 061005.
- [16] XIAO WANG, ZONGBAO SHEN, CHUNXING GU, DI ZHANG, YUXUAN GU, HUIXIA LIU, Laser indirect shock micro-embossing of commercially pure copper and titanium sheet, Optics and Lasers in Engineering 56, 2014, pp. 74–82.
- [17] ZONGBAO SHEN, HUIXIA LIU, XIAO WANG, HEJUN WANG, Micromold-based laser shock embossing of metallic foil: fabrication of large-area three-dimensional microchannel networks, Materials and Manufacturing Processes 26(9), 2011, pp. 1126–1129.
- [18] HUIXIA LIU, MENGMENG LU, XIAO WANG, ZONGBAO SHEN, CHUNXING GU, YUXUAN GU, Micro-punching of aluminum foil by laser dynamic flexible punching process, International Journal of Material Forming 8(2), 2015, pp. 183–196.
- [19] NAGARAJAN B., CASTAGNE S., ZHONGKE WANG, Investigation of copper foil thinning behavior by flexible-pad laser shock forming, Key Engineering Materials 535–536, 2013, pp. 306–309.
- [20] HUANG GAO, YAOWU HU, YI XUAN, JI LI, YINGLING YANG, MARTINEZ R.V., CHUNYU LI, JIAN LUO, MINGHAO QI, CHENG G.J., Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures, Science 346(6215), 2014, pp. 1352–1356.
- [21] YAOWU HU, PRASHANT KUMAR, RONG XU, KEJIE ZHAO, CHENG G.J., Ultrafast direct fabrication of flexible substrate-supported designer plasmonic nanoarrays, Nanoscale 8(1), 2016, pp. 172–182.
- [22] FABBRO R., FOURNIER J., BALLARD P., DEVAUX D., VIRMONT J., Physical study of laser-produced plasma in confined geometry, Journal of Applied Physics 68(2), 1990, pp. 775–784.
- [23] PEYRE P., FABBRO R., Laser shock processing: a review of the physics and applications, Optical and Quantum Electronics 27(12), 1995, pp. 1213–1229.
- [24] UCHIC M.D., DIMIDUK D.M., FLORANDO J.N., NIX W.D., Sample dimensions influence strength and crystal plasticity, Science 305(5686), 2004, pp. 986–989.
- [25] CSIKOR F.F., MOTZ C., WEYGAND D., ZAISER M., ZAPPERI S., Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale, Science 318(5848), 2007, pp. 251–254.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8318fd4-60f2-402e-9170-864f83878c2e