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Classification of the norming sets of £;(31?)

Sung Guen Kim

Summary. Let n € N, n > 2. Let (E, || - |) be a Banach space. An element  Keywords

(x1,...,xn) € E" is called a norming point of T € L("E) if |x1| =---=  Norming points;

|xa| =1and |T(xi1,...,x4)| = || T||, where L("E) denotes the space of ~ symmetric 3-linear forms

all continuous symmetric n-linear forms on E. For T € L("E), we define  on on the plane with the
l;-norm

Norm(T) = {(xl, .oosXn) € E":(x1,...,%4) is a norming point of T}.

MSC 2010
Norm(T) is called the norming set of T. In this paper, we classify 46A22

Norm(T) for every T e L;(*I}), where £,(*I7) denotes the space of
all continuous symmetric 3-linear forms on the plane with the /;-norm.
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1. Introduction

In 1961 Bishop and Phelps [2] showed that the set of norm attaining functionals on a Ba-
nach space is dense in the dual space. Shortly after, attention was paid to possible exten-
sions of this result to more general settings, specially bounded linear operators between
Banach spaces. The problem of denseness of norm attaining functions has moved to other
types of mappings like multilinear forms or polynomials. The first result about norm at-
taining multilinear forms appeared in a joint work of Aron, Finet and Werner [1], where
they showed that the Radon-Nikodym property is sufficient for the denseness of norm
attaining multilinear forms. Choi and Kim [3] showed that the Radon-Nikodym proper-
ty is also sufficient for the denseness of norm attaining polynomials. Jiménez-Sevilla and
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Paya [5] studied the denseness of norm attaining multilinear forms and polynomials on
preduals of Lorentz sequence spaces.

Let n € N, n > 2. We write Sg for the unit sphere of a Banach space E. We denote by
L("E) the Banach space of all continuous #-linear forms on E endowed with the norm
[T = sup{|T(x15...,xn)| : (x1,...,%n) € Sg x -+~ x Sg}. L("E) denote the closed
subspace of all continuous symmetric #n-linear forms on E. An element (x,...,x,) € E"
is called a norming point of T if |x;| =--- = |x,| =1and |T(x1,...,x,)| = || T|.

For T € L("E), we define

Norm(T) = {(xl, ceosXn) € E":(x1,...,x,) is a norming point of T}.

Norm(T) is called the norming set of T. Notice that (xi,...,x,) € Norm(T) if and only
if (€1x1,...,€nx,) € Norm(T) for some ¢ = £1 (k =1,...,n). Indeed, if (x1,...,x,) €
Norm(T), then

>

|T(€1x1,...,6nxn)| = |61...enT(x1,...,xn)| = |T(x1,...,xn)| =|T

which shows that (e;xy,...,€,x,) € Norm(T). If (€1xy,...,€,x,) € Norm(T) for some
ex=+1(k=1,...,n), then

(X150, %p) = (el(elxl), cees€p (enx,,)) € Norm(T).
The following examples show that Norm(T') may be empty or an infinite set.

1.1. Examples.
(i) Let

(oo}

1
T((x1)iev> (yi)iew) = . 2i%iYi € Li(%co).
i=1

We claim that Norm(T') = @. Obviously,
((x:)ien> (¥i)ien) € Norm(T). Then,

T| = 1. Assume that Norm(T) # @. Let

1= |T((Xi)ieN> (}’i)ieN)| < ?|x,-| lyil € 2" 1,
i=1 i=1

which shows that |x;| = |y;| = 1for all i € N. Hence, (x;)ien, (¥i)ien ¢ co. This is
a contradiction. Therefore, Norm(T) = &.

(ii) Let
T((xi)ieN’ (yi)ieN) = xiy1 € L(Pco).
Then,

Norm(T) = {((£L x2,%3,-..), (2L, y2, ¥3,...)) € co x co: |x;| < L, |y < 1for j > 2}.
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A mapping P:E — R is a continuous n-homogeneous polynomial if there exists
a continuous #-linear form L on the product E x - x E such that P(x) = L(x,...,x)
for every x € E. We denote by P (" E) the Banach space of all continuous n-homogeneous
polynomials from E into R endowed with the norm ||P| = sup{|P(x)|: x| =1}.

An element x € E is called a norming point of P € P("E) if | x| = 1and |P(x)| = || P|.
For P € P("E), we define

Norm(P) = {x € E: x is a norming point ofP}.

Norm(P) is called the norming set of P. Notice that Norm(P) may be empty or an infini-
te set.

Kim [7] has classified Norm(P) for every P € P(%I2), where [2 = R? with the
supremum norm.

IfNorm(T) # @, T € L("E) is called a norm attaining n-linear form and if Norm(P) #
@, P e P("E) is called a norm attaining n-homogeneoue polynomial (see [3]).

For more details about the theory of multilinear mappings and polynomials on a Ba-
nach space, we refer to [4].

It seems to be natural and interesting to study about Norm(T) for T € L("E). For
m € N, let [[* := R™ with the /;-norm and /2, = R? with the supremum norm. Notice
thatif E = I" or I2, and T € L("E), Norm(T) # @ since Sg is compact. Kim ([6,8-10])
classified Norm(T) for every T € L, (*12.), L(*1%), LP1?), L,(P1]) or L(31F). Kim [11]
classified Norm(T) for every T ¢ L(*R; ) ), where R} () denotes the plane with the

oy = max{y) |+] + (1- w)y[}. Kiom [12]

studied and investigated the norming set of a multilinear form on R? with a certain norm.

hexagonal norm with weight 0 < w <1 (x, )|
In this paper, we classify Norm(T) for every T € L,(*I}).

2. Results
2.1. Theorem ([10]). Let n,m > 2. Let T € L(™1]') with
T((xl(l),...,xf,l)),...,(xl(m),...,x,g'”))) =y a,-l,.,,-mx.(l) xm

i i
I<ig<n
1<k<m

for some a;,._;, € R. Then
| T|| = max{|a;,..i,|: 1< ix <n, 1<k <m}.

By simplicity we denote T = (aj,...i,, )i<i,<n,1<k<m- We call a;, ;s the coefficients of
T. Notice that if | T|| = 1, then |a;,_;,| < 1forall 1< iy < n,1< k< m.

2.2. Theorem ([10]). Let n,m > 2. Let T € L(™I]") be the same as in Theorem 2.1. Suppose
that (¢80, ... 8), . (¢80, 18™)) € Norm(T). If |ay i | < |T| for 1 < i <
n,1< k < m, then tf,l)...tf,"‘) =0.
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2.3. Theorem ([12]). Let n,m > 2. Let T = (ai, .., )i<iy<nick<m € L(™1]') be the same as
in Theorem 2.1 with ||T| = 1. Let &;,._;,, = 1if |a;,..;,| =1and § =0if |a;. i, | <1 We
define

ieeim

Ts= (ai1~~~im O )1siksn,1<ksm e L(IT).
Then, Norm(T) = Norm(Tp).
The following shows that we can classify Norm(T') forevery T € L("I]*) with | T|| = 1

if we have known Norm(S) for every S = (by,. i, )i<ip<n,1<k<m € L("1") such that |S|| =
1=1bj,. ;| foreveryl< iy <n,1< k< m.

2.4. Theorem ([12]). Let n,m > 2. Let T = (a,...i, )i<ip<n1<k<m € L(™ 1) with | T| = 1.
Define S = (b,...i,, )1<iz<nacksm € L("L") be such that by, ;. = a;. i, if |ai..i,| =1
and by, _;, =1if |a;,. i, | <1 Then,

Norm(T)= [ {((tl(l),...,tﬁl)),...,(tl(m),...,t,(f")))eNorm(S):
|“i{...i{n|<1

I<ip<n,1<k<m

1 _ (m) _
til' —O,...,orti:n —0}.

Proof. For completeness we present a proof.
Let

F={((, )@, ) eNorm(8) 18 L™ = 0
if la;;..ir | <1for some1< i} <n, 1<k < m}
We will show that Norm(T') = F. Note that by Theorem 2.1, ||S|| = 1.
(). Let (£, .., ¢y, ., (¢, .., ™)) € Norm(T). Then
1 1 m m
1= 8] 2 [S((#", .o 8, (18, ™))
[ X e Y a D]

m
\“i{,“i;,,|<1 (@i [=1

= ‘ Y aiin tfll) . ti(,T)‘ (by Theorem 2.2, tfl,l) ...tf::”) = 0)

aiy..im =1
- 1 (m) ) (m)
- ‘ Z ai]’"'i;ntil' tl:n + Z ai1~-~imti1 "'tim
‘ai{...i;nkl [aiy..ip |=1

=T, )| = T = 1,

0 ((tl(l),...,t,gl)), ey (tl(m), ey t,(,m))) € Norm(S) satisfying tf,l) ... tf,m) = 0if[ay .ir | <
L Thus, ((¢0, .., e, ., (™, M)y e .
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(2).Let((tl(l),...,tfll)),...,(tl(m),...,t,sm)))ef.Itfollowsthat
1= 8] = S((, ..oty (69, M)
-1y e ail_,.imtff)...tff)’

m

lay i I<1 iy =1
= | > aii, tfll) . tff)| (since tf,l) ... tf,m) = 0)
[@iy...ip |=1 l "

= |T5((t1(1),...,t,(11)), R (tl(m), s t,(,m)))| (by Theorem 2.3)
=T, L)) < T = 1,
which implies that ((tl(l), oty (tf’”),...,t,ﬁ’"))) € Norm(T). O

2.5. Theorem ([12]). Let n € Nand T € L("1}) with | T|| = 1. Then,
Norm(T) = |J (A} U Ay UBk 1 UB2),
k=1

where
Ap={(£X1, . £ X (B 1- 1), £ X, £X,) € (Sﬁ(n,lz))n:
T(X1s .o or Xiet (L0), Xats - X,
x (X1, Xee1 (0,1), Xpats ., X ) =1, 0 < £ <1,
Ap={(£Xp .. £ X 2(H-(1- 1)), £ X ka1, . £ X, ) € (Sﬁ(nllz))n:
T(X1s- o> Xien (1,0), Xsts - X,
x T(X1,. s Xeen (0,1), Xiats ., X ) = =1, 0< £ <1,
Bia = {(£X1,.. ., £Xko1, £(1,0), £ Xps1, ..., £ X, ) € (Sﬁ(nllz))n:
1=|T(X1,. .., Xeot, (1,0), Xpsts . » £ X)) |
>|T(X1s o5 Xiets (0,1), Xiwts <> X )|}
By = {(in, .. .,iXk,l,i(O,l),iXkH,...,an) € (Sﬁ(nllz))
1=|T(X1, ..., Xiet (0,1), Xpsts o » X)) |
>|T(X1 s Xeets (1,0), Xpats - X)) |-

n

Let T((x1, 1), (x2, y2), (x3,y3)) = ax1x2x3+by1y2y3+c(x2x3y1+x1x3y2+x1x2y3)+
d(x3)1y2 + x2y1¥3 + X12y3) € L(P1?) be such that | T| = 1,a, b, ¢, d € R. Note that we
may assume that @ > 0,b > 0. Indeed, if a < 0, we take —T. Thus we may assume that
a>0.Ifb <0, we take T; € L;(*1?) such that

T ((x1, 1), (%2, 32), (23, 3) ) 1= T((x1,=31)5 (%2, =325 (x3,-3))
forxj, yj e R (j=12,3).
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In order to find Norm(T') with | T|| = 1, by Theorems 2.1 and 2.4 it suffices to assume
that1=a =|b| = |c| = |d|.
Let W c (S;2)°. We denote

Sym(W) := {(Xa(l),XU(z), Xo(3)) : X1, X2, X3 € W, 0 is a permutation on {1, 2,3}}.
We are in a position to classify Norm(T') for every T € L (*1?).

2.6. Theorem. Let T((x1, y1), (X2, ¥2), (%3, ¥3)) = axixaxs+by1y2y3+c(X2x3y1+x1X3 Y2+
x1%2y3) + d(x3 9192 + Xo01ys + x192y3) € Lo(Cl1E) such that |[T| =1=a=0b=|c| = |d|
Then the following statements hold.

(i) fa=b=c=d =1, then
Norm(T) = {(+ (£1- 1), 4(s,1 =), +(u,1-u)) :0< £,5,u <1},
(ii) fa=b=-c=d =1, then
Norm(T) = 5ym({( + (6,-(1- 1)), +(s,~(1-5)), £(1,0)),
(+(61-1),2(0,1),£(0,1)) : 0< t,s < 1}).
(ili) If a=b=c=-d =1, then
Norm(T) = 5ym({( + (t,-(1= 1)), +(s,~(1=5)), (0,1)),
(+(61-1),£(1,0),4(1,0)) :0< t,5<1}).

(iv) Ifa=b=—-c=-d =1, then

Norm(T) = sym({(( + (t,-(1-1)),+(1,0),%(1,0)),
(+(6-1-1)),£(0,1),£(0,1)), (= (t,1— ) + (1,0),£(0,1)) : 0 < £ < 1})
Proof. We use Theorem 2.5.
The proof of (i) is immediate. Let (xx, yx) € {(1,0),(0,1)} for k = 1,2, 3.
(ii). a = b = —¢c = d = 1. Note that if (0,1) appears once in the term T((x1, y1), (%2, ¥2),

(X3,)/3)), then
T((x1, 31)> (2, 92), (%3, y3) ) = -1
and otherwise

T((x1,1)> (%2, p2)5 (%3, 3)) = L.

By symmetry of T we may consider three subcases as following:
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Subcase 1. (xj, y;) = (1,0) for j = 2, 3. Note that

7((1,0),(1,0),(1,0)) =1=-7((0,1), (1,0), (1,0)).

Thus,

T((t,-(1-1)),(1,0),(1,0)) =1 for0O<t<1L
Note that

T((t,-(1-1)),(0,1),(1,0)) =-1 for0<t<1.
Thus

T((t,-(1-1)),(5,-(1-5)),(1,0)) =1 for0O<t,s<L
Note that for 0 < t,s < 1,
1> |T((t,=(1=1)), (s, =(1=5)), (0,1))|
and
7((0,1),(0,1),(0,1)) =1.
Thus, the set of the norming points appeared in Subcase 1 is
Sym({(£(t,—(1- 1)), (s, —(1-5)),£(1,0)), (£(0,1), £(0,1),£(0,1)) : 0< t, s < 1}).

Subcase 2. (x, y2) = (0,1) and (x3, y3) = (1,0). Note that

7((1,0),(0,1),(1,0)) = -1=-T((0,1), (0,1), (1,0)).

Thus, for0 <t <1,

T((t,-(1-1)),(0,1),(1,0)) = -1=-T((t,-(1- 1)), (1,0), (1,0)).

Thus
T((t,-(1-1)),(s,—(1-5)),(1,0)) =1 for0<t,s<L

Note that for 0 < t,s < 1,

1> [T((6-(1= 1)), (5, =(1=5)), (0,1))]

and
7((0,1),(0,1),(0,1)) =1.
By the same argument as in Subcase 1, the set of the norming points appeared in Subcase 2

is

Sym({(=(t,~(1-1)),(s,—(1-5)),=(1,0)), (£(0,1),£(0,1),+(0,1)) :0 < £, s <1}).
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Subcase 3. (xj, y;j) = (0,1) for j = 2, 3. Note that

7((1,0),(0,1), (0,1)) =1=T((0,1),(0,1), (0,1)).

Thus, T((t,1-1),(0,1),(0,1)) =1for 0 < ¢ < 1and Thus |T((¢,1-¢),(0,1),(1,0))| <1
for 0 < t < 1. Note that

7((1,0),(0,1),(1,0)) = -1=-T((0,1), (0,1), (1,0)).

Thus, the set of the norming points appeared in Subcase 3 is
Sym({(£(t,1-1),£(0,1),+(0,1)), (£(1,0),+(1,0),£(0,1)):0 < t < 1}).
Collecting the norming sets of T in Subcases 1-3, we have

Norm(T) = Sym({(i(t, -(1-1)),£(s,—(1-5)), i(l,O)),
(£(t,1-1),£(0,1),+(0,1)):0< t, s <1}).

(iii). @ = b = ¢ = —=d = 1. Note that if (0,1) appears twice in the term T((xl,yl), (x2,72),
(x3,y3)), then
T((x1, 1), (%2, y2), (%3, 3)) = -1
and otherwise
T((x1, 1), (%2, 2)s (%3, 3)) = 1.
By symmetry of T we may consider three subcases as following.

Subcase 1. (xj, y;) = (1,0) for j = 2, 3. Note that

7((1,0),(1,0),(1,0)) =1=T((0,1), (1,0), (1,0)).

Thus,
T((t,1-1),(1,0),(1,0)) =1 for0<t<1.

Note that for 0 < £ <1,

1>|T((t,1-1),(0,1),(1,0))| = |T((t,1-£),(1,0), (0,1))|

and T((1,0), (0,1), (0,1)) = -1. Thus, the set of the norming points appeared in Subcase
lis

Sym({(£(t,1-1),(1,0),+(1,0)), (£(1,0),+(0,1), £(0,1)):0 < t < 1}).
Subcase 2. (x,, y2) = (0,1) and (x3, ¥3) = (1,0). Note that

7((1,0),(0,1),(1,0)) =1=-T((0,1), (0,1),(1,0)).
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Thus, for0 < t <L, T((t,-(1-¢)),(0,1),(1,0)) =1land 1> |T((¢t,-(1-1)), (1,0), (1,0))|
for 0 <t <1,T((1,0),(1,0),(1,0)) = 1. Thus, the set of the norming points appeared in
Subcase 2 is

Sym({(£(t,—(1-1)),£(0,1),£(1,0)), (£(1,0), £(1,0),£(1,0)) : 0< £ < 1}).
Subcase 3. (xj, y;) = (0,1) for j = 2,3. Note that
7((1,0),(0,1),(0,1)) = -1=-T((0,1), (0,1), (0,1)).
Thus, 0< ¢ <1,
~T((t:=(1= 1)), (0,1),(0,1)) =1=T((t,~(1- 1)), (1,0), (0, 1)).

Thus for 0 < t,s <1,

T((t:=(1=1)), (s, =(1=5)),(0,1)) = L.
Note that for 0 < £,5 <1,

IT((t,-(1= 1)), (5,=(1=5)), (1,0))] <1

and T((1,0), (1,0), (1,0)) = 1. Thus, the set of the norming points appeared in Subcase 3
is

Sym({(£(t, (1= 1)), (s, =(1=5)), (0, 1)), (+(1,0), £(1,0), £(1,0)) :0 < £, s < 1}).
Collecting the norming sets of T in Subcases 1-3, we have

Norm(T) = Sym({(:t(t, ~(1-1)),%(s,—(1-5)),+(0,1)),
(£(t,1-1),£(1,0),+(1,0)) : 0< £, s <1}).

(iv). a = b = —c = —d = 1. Note that if (0,1) appears once or twice in the term T'((x1, y1),
(x2,¥2)> (%3, y3)), then
T((x1, 1), (%2, y2), (%3, y3)) = -1

and otherwise
T((XI, )’1), (xZa )’2)) (X3, }/3)) =1
By symmetry of T we may consider three subcases as following:

Subcase 1. (xj, y;) = (1,0) for j = 2, 3. Note that

7((1,0),(1,0),(1,0)) =1=-T((0,1), (1,0), (1,0)).
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Thus,
T((t,-(1-1)),(1,0),(1,0)) =1 for0O<t<L
Note thatfor0 <t < 1,
1> |T((t,-(1-1)),(0,1),(1,0))| =|T((t, (1 - )), (1,0), (0,1))|

and T( (1,0),(0,1), (0, 1)) = —1. Thus, the set of the norming points appeared in Subcase 1
is

Sym({(+(t, (1= 1)), £(1,0),£(1,0)), (£(1,0), £(0,1), (0, 1)) :0< £ < 1}).
Subcase 2. (x, y2) = (0,1) and (x3, ¥3) = (1,0). Note that

7((1,0),(0,1),(1,0)) = -1=T((0,1), (0,1), (1,0)).

Thus,
T((t,1-1),(0,1),(1,0)) =-1 for0<t<1.

Note that for0 < t < 1,
1>|T((t,1-1),(1,0),(1,0))| = |T((t,1-£),(0,1),(0,1))]

and T((1,0),(1,0),(1,0)) =1 = T((1,0),(0,1),(0,1)). Thus, the set of the norming
points appeared in Subcase 2 is

Sym({(x(t,1-£),£(0,1),£(1,0)), ((1,0), £(1,0), £(1,0)),
(£(1,0),£(0,1),+(0,1)) : 0 < £ < 1}).

Subcase 3. (xj, y;) = (0,1) for j = 2,3. Note that

-T((1,0),(0,1),(0,1)) =1= T((0,1), (0,1), (0,1)).

Thus,
T((t,-(1-1)),(0,1),(0,1)) =-1 for0<t<L.

Note that for 0 < t < 1,
1>|T((t,-(1- 1)), (1,0),(0,1))|

and T((l, 0),(1,0), (0, 1)) = 1. Thus, the set of the norming points appeared in Subcase 3
is

Sym({(+(6,~(1- 1), £(0,1), £(0,1)), (£(1,0), £(1,0) £ (0,1)):0< £ < 1}).
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Collecting the norming sets of T in Subcases 1-3, we have

Norm(T) = Sym({(i(t, -(1-1)),£(1,0), :I:(l,O)), (ﬂ:(t, -(1-1)),£(0,1), i(O,l)),

(£(t,1-1) +(1,0),£(0,1)):0< £ < 1}).

We complete the proof. O
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