Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main objective of this article is to assess the legitimacy of using different tracking systems applied to the photovoltaic panels, for the city of Wroclaw (Poland), using 2 numerical tools: the CM SAF (Climate Monitoring Satellite Application Facility) and PVGIS (Photovoltaic Geographical Information System). In order to identify the solar irradiation, the CM-SAF database (based on the measurements of MFG – Meteosat First Generation – and MSG – Meteosat Second Generation – satellites) was utilised, while the PVGIS (Photovoltaic Geographical Information System) – to calculate the energy yield from PV panels. Particular attention was given to the optimisation of the annual tilt angle and the determination of the energy benefits from the implementation of the various sun tracking systems. Conducted studies showed that up to 30% more electricity yearly can be yielded after the replacement of PV cells with optimally fixed both azimuth and tilt angles by the 2-axis tracking system (179 kWh/m2 instead of 138 kWh/m2). Moreover, by the adequate decreasing of tilt angles in the summer time or obtaining the most favourable local solar exposure conditions, the supply curve of PV units may be significantly flattened, which may be beneficial when energy storage systems have low capacities.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
227--243
Opis fizyczny
Bibliogr. 41 poz., rys., wykr., wz.
Twórcy
autor
- Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering Department of Cryogenics and Aviation Engineering Poland
autor
- Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering Department of Energy Conversion Engineering Poland
Bibliografia
- [1] McKinsey&Company, Assessment of Greenhouse Gas Emissions Abatement Potential in Poland by 2030. Summary of findings, Publications of McKinsey&Company (2009).
- [2] Fraunhofer Institute for Solar Energy Systems, PSE AG, Photovoltaics Report, Materials of Fraunhofer ISE (2017).
- [3] Ciechanowska M., Energy Policy of Poland by 2050, Nafta-Gaz (in Polish), vol. 11, pp. 839–842 (2014).
- [4] Stowarzyszenie Branży Fotowoltaicznej – Polska PV, Development of the Polish PV market in 2010-2020, Główny Urząd Statystyczny (in Polish) (2016).
- [5] Ministerstwo Gospodarki RP, Conclusions from forecast analyses for the purposes of Energy Policy of Poland until 2050. Annex 2, Ministerstwo Gospodarki RP (in Polish) (2015).
- [6] Strupczewski A., Analysis and evaluation of electricity costs from various energy sources in Poland, National Centre of Nuclear Research (in Polish), Świerk (2015).
- [7] Babatunde A. A., Abbasoglu S., Evaluation of field data and simulation results of a photovoltaic system in countries with high solar radiation, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 23, no. 6, pp. 1608–1618 (2015), DOI: 10.3906/elk-1402-313.
- [8] Abdul Kareem M.S., Saravanan M., A new method for accurate estimation of PV module parameters and extraction of maximum power point under varying environmental conditions, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 24, no. 4, pp. 2028–2041 (2016), DOI: 10.3906/elk1312-268.
- [9] Khan J., Arsalan M. H., Solar power technologies for sustainable electricity generation – A review, Renewable & Sustainable Energy Reviews, vol. 55, pp. 414–425 (2016), DOI: 10.1016/j.rser.2015.10.135.
- [10] Hafiz A. M., Abdelrahman M. E., Temraz H., Economic dispatch in power system networks including renewable energy resources using various optimization techniques, Archives of Electrical Engineering, vol. 70, no. 3, pp. 643–655 (2021), DOI: 10.24425/aee.2021.137579.
- [11] Cholewiński M., Tomków Ł., Domestic hydrogen installation in Poland – technical and economic analysis, Archives of Electrical Engineering, vol. 64, no. 2, pp. 189–196 (2015), DOI: 10.1515/aee2015-0016.
- [12] Sharma H., Pal N., Kumar P., Yadav A., A control strategy of hybrid solar-wind energy generation system, Archives of Electrical Engineering, vol. 66, no. 2, pp. 242–251 (2017), DOI: 10.1515/aee2017-0018.
- [13] Jastrzębska G., Solar cells. Construction, technology and application, Wydawnictwa Komunikacji i Łączności (in Polish) (2013).
- [14] Ding R., Feng C., Wang D., Sun R., Wang L., Yuan S., Trade based on alliance chain in energy from distributed photovoltaic grids, Archives of Electrical Engineering, vol. 70, no. 2, pp. 325–336 (2021), DOI: 10.24425/aee.2021.136987.
- [15] IHS Markit, Concentrated PV (CPV) Report – 2014, IHS Markit Company (2014).
- [16] Huld T., Jäger Waldau A., Ossenbrink H., Szabo S., Dunlop E., Taylor N., Cost Maps for Unsubsidised Photovoltaic Electricity, Report number JRC 91937 Joint Research Centre (2014).
- [17] Fraunhofer ISE, Current and Future Cost of Photovoltaics. Long-term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems, Study on behalf of Agora Energiewende, 059/01-S-2015/EN (2015).
- [18] Bukowski M., Śniegocki A., Megatrends – from acceptance to action, WiseEuropa – Warsaw Institute for Economic and European Studies (in Polish), ISBN 978-83-64813-30-6 (2017).
- [19] Badescu V., Modeling Solar Radiation at the Earth’s Surface, Springer (2008), DOI: 10.1007/978-3-540-77455-6.
- [20] The German Energy Society, Planning & Installing Photovoltaic Systems. A Guide for Installers, Architects and Engineers, Earthscal (2008), DOI: 10.4324/9781849776998.
- [21] Šúri M., Remund J., Cebecauer T., Dumortier D., Wald L., Huld T., Blanc P., First Steps in the Cross-Comparison of Solar Resource Spatial Products in Europe, Proceedings of the EUROSUN 2008,1𝑠𝑡 International Conference on Solar Heating, Cooling and Buildings, Lisbon, Portugal, JRC47255 (2008).
- [22] Scharmer K., Greif J., The European Solar Radiation Atlas. Vol. 1: Fundamentals and Maps, École des Mines de Paris, ISBN 2-911762-21-5 (2000).
- [23] NREL, Best Research-Cell Efficiency Chart, available on-line: https://www.nrel.gov/pv/cell-efficiency.html, accessed May 2021.
- [24] International Renewable Energy Agency (IRENA), Solar Photovoltaics, Renewable Energy Technologies: Cost Analysis Series, Vol. 1: Power Sector, iss. 4/5 (2012).
- [25] Saga T., Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Materials, vol. 2, pp. 96–102 (2010), DOI: 10.1038/asiamat.2010.82.
- [26] Mengi O. O., Altas I. H., Fuzzy logic control for a wind/battery renewable energy production system, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 2, pp. 187–206 (2012), DOI: 10.3906/elk-1104-20.
- [27] Buyukguzel B., Aksoy M., A current-based simple analog MPPT circuit for PV systems, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 24, no. 5, pp. 3621–3637 (2016), DOI: 10.3906/elk-1407-21.
- [28] Hafez A.Z., Tilt and azimuth angles in solar energy applications – A review, Renewable & Sustainable Energy Reviews, vol. 77, pp. 147–168 (2017), DOI: 10.1016/j.rser.2017.03.131.
- [29] Seddjar A., Kerrouche K.D.E., Wang L., Simulation of the proposed combined Fuzzy Logic Control for Maximum Power Point Tracking and Battery Charge Regulation used in CubeSat, Archives of Electrical Engineering, vol. 69, no. 3, pp. 521–543 (2020), DOI: 10.24425/aee.2020.133916.
- [30] Komarnicki P., Energy storage systems: power grid and energy market use cases, Archives of Electrical Engineering, vol. 65, no. 3, pp. 495–511 (2016), DOI: 10.1515/aee-2016-0036.
- [31] Michalak P., Atmospheric transparency coefficient at selected stations in the Southern and Eastern Poland, Polska Energetyka Słoneczna (in Polish), vol. 2–4, pp. 23–26 (2011).
- [32] Marchel P., Paska J., Modeling of photovoltaic power plants reliability, Rynek Energii (in Polish, abstract in English), vol. 111, no. 2, pp. 81–86 (2014).
- [33] Cooper P.I., The absorption of radiation in solar stills, Solar Energy, vol. 12, pp. 333–346 (1969), DOI: 10.1016/0038-092X(69)90047-4.
- [34] Shen Ch., He Y.-L., Liu Y.-W., Tao W.-Q., Modelling and simulation of solar radiation data processing with Simulink, Simulation Modelling Practice and Theory, vol. 16, pp. 721–735 (2008), DOI: 10.1016/j.simpat.2008.04.013.
- [35] Kamali G.A., Moradi I., Khalili A., Estimating solar radiation on tilted surfaces with various orientations: a study case in Karaj (Iran), Theoretical and Applied Climatology, vol. 84, pp. 235–241 (2006), DOI: 10.1007/s00704-005-0171-y.
- [36] Polski Komitet Normalizacyjny, EN 61215-1:2016. Terrestrial photovoltaic (PV) modules. Design qualification and type approval. Test requirements, PKN (2016).
- [37] Photovoltaic Geographical Information System (PVGIS), available on-line: https://ec.europa.eu/jrc/en/pvgis, accessed April 2018.
- [38] Amillo A.G., Huld T., Müller R., A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation, Remote Sensing, vol. 6, pp. 8165–8189 (2014), DOI: 10.3390/rs6098165.
- [39] Shiva Kumar B., Sudhakar K., Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India, Energy Reports, vol. 1, pp. 184–192 (2015), DOI: 10.1016/j.egyr.2015.10.001.
- [40] Ministerstwo Klimatu i Środowiska, Energy Policy of Poland by 2040. Annex to the Resolution No. 22/2021 of the Council of Ministers from the 2nd February 2021, Ministerstwo Klimatu i Środowiska RP (in Polish) (2021).
- [41] Wood Mackenzie, US solar PV system pricing: H2 2020, Wood Mackenzie (2020).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f82e337b-a943-45a6-ad5f-90d39791a9a0