PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the statistical characteristics of crosstalk in naval ships wiring harness based on Polynomial Chaos Expansion method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Crosstalk in wiring harness has been studied extensively for its importance in the naval ships electromagnetic compatibility field. An effective and high-efficiency method is proposed in this paper for analyzing Statistical Characteristics of crosstalk in wiring harness with random variation of position based on Polynomial Chaos Expansion (PCE). A typical 14-cable wiring harness was simulated as the object of research. Distance among interfering cable, affected cable and GND is synthesized and analyzed in both frequency domain and time domain. The model of naval ships wiring harness distribution parameter was established by utilizing Legendre orthogonal polynomials as basis functions along with prediction model of statistical characters. Detailed mean value, mean square error, probability density function and reasonable varying range of crosstalk in naval ships wiring harness are described in both time domain and frequency domain. Numerical experiment proves that the method proposed in this paper, not only has good consistency with the MC method can be applied in the naval ships EMC research field to provide theoretical support for guaranteeing safety, but also has better time-efficiency than the MC method. Therefore, the Polynomial Chaos Expansion method.
Rocznik
Tom
S 2
Strony
205--214
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • College of Instrumental and Electrical Engineering Jilin University Changchun Jilin 130061 China
  • Jilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy Saving, Jilin Jianzhu University, Changchun, Jilin, China
autor
  • Jilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy Saving, Jilin Jianzhu University, Changchun, Jilin, China
autor
  • ilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy Saving, Jilin Jianzhu University, Changchun, Jilin, China
autor
  • College of Instrumental and Electrical Engineering Jilin University Changchun Jilin 130061 China
autor
  • State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, Jilin, China
autor
  • State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, Jilin, China
Bibliografia
  • 1. J.X. Gao, B.M. Manson, P. Kyratsis: Implementation of concurrent engineering in the suppliers to the naval ships industry, Journal of Materials Processing Technology, Vol. 107, no. 1-3, pp.201-208, 2000.
  • 2. Schmidt, K., Tröger, P., Kroll, H., Bünger, T. et al.: Adapted Development Process for Security in Networked Naval ships Systems, SAE Int. J. Passeng. Cars – Electron. Electr. Syst. Vol. 7(2), pp.516-526, 2014.
  • 3. Anna Kochan: Magnetic pulse welding shows potential for naval ships applications, Assembly Automation, Vol. 20, no. 2, pp.129-132, 2000.
  • 4. Jialu Zhang: Topological properties of prime filters in MTLalgebras and fuzzy set representations for MTL-algebras, Fuzzy Sets and Systems, Vol. 178, no.1, pp38-53, 2011.
  • 5. LoVetri Joe, Lapohos Tibor: Explicit upwind schemes for lossy MTL’s with linear terminations, IEEE Transactions on Electromagnetic Compatibility, Vol. 39, no. 3, pp. 189200, 1997.
  • 6. Kong, Yongdan, Chu Qingxin, Li Ronglin: High-order unconditionally-stable four-step ADI-FDTD methods and numerical analysis, Progress in Electromagnetics Research, Vol. 135, pp. 713-734, 2013.
  • 7. Xiao Fei, Tang Xiaohong, Wang Ling: Stability and numerical dispersion analysis of a 3D hybrid implicitexplicit FDTD method, IEEE Transactions on Antennas and Propagation, Vol. 56, no. 10, pp. 3346-3350, 2008.
  • 8. Cooray F.R., Bird T.S.: Analysis of radiation from two separate circular cylindrical waveguides by the method of moments, Radio Science, Vol. 35, no. 2, pp. 567-577, 2000.
  • 9. Upadhyay Rochan R.: Evaluation of the use of the Chebyshev algorithm with the quadrature method of moments for simulating aerosol dynamics, Journal of Aerosol Science, Vol. 44, pp. 11-23, 2012.
  • 10. Kalantari Nima Khademi, Sen Pradeep: Removing the noise in Monte Carlo rendering with general image denoising algorithms, Computer Graphics Forum, Vol. 32, no. 2, pp. 93-102, 2013.
  • 11. Yeung Jackson H.C., Young Evangeline F.Y., Leong Philip H.W.: A Monte-Carlo floating-point unit for self-validating arithmetic, ACM/SIGDA International Symposium on Field Programmable Gate Arrays – FPGA, pp. 199-207, 2011.
  • 12. Baier Hendrik, Winands Mark H.M.: Monte-Carlo tree search and minimax hybrids with heuristic evaluation functions, Communications in Computer and Information Science, Vol. 504, pp. 45-63, 2014.
  • 13. Sepahvand K., Marburg S., Hardtke H.J.: Stochastic structural modal analysis involving uncertain parameters using generalized polynomial chaos expansion, International Journal of Applied Mechanics, Vol. 3, no. 3, pp. 587-606, 2011.
  • 14. Fagiano Lorenzo, Khammash Mustafa: Simulation of stochastic systems via polynomial chaos expansions and convex optimization, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, Vol. 86, no. 3, 2012.
  • 15. Hacibekirog G., Cag M., Polatog Y.: The higher order Schwarzian derivative: Its applications for chaotic behavior and new invariant sufficient condition of chaos, Nonlinear Analysis: Real World Applications, Vol. 10, no. 3, pp. 12701275, 2009.
  • 16. Nekhamkina Olga, Sheintuch Moshe: Spatially “chaotic” solutions in reaction-convection models and their bifurcations to moving waves, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, Vol. 66, no. 1, pp. 016204/1-016204/5, 2002.
  • 17. Creamer Dennis B.: On using polynomial chaos for modeling uncertainty in acoustic propagation, Journal of the Acoustical Society of America, Vol. 119, no. 4, pp. 1979-1994, 2006.
  • 18. Sandu Corina, Sandu Adrian, Ahmadian Mehdi: Modeling multibody systems with uncertainties. Part II: Numerical applications, Multibody System Dynamics, Vol. 15, no. 3, pp. 241-262, 2006.
  • 19. Guoping Ru, Rong Yu, Yulong Jiang, Gang Ruan: Thermal activation of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height, Chinese Physics B, Vol.09, pp. 552-562, 2010.
  • 20. S.M EI shazly: Estimation of Hourly and Daily Global Solar Radiation at Clear Days Using an Approach Based on Modified Version of Gaussian Distribution, Advances in Atmospheric Sciences, Vol. 03, pp. 349-358, 1996.
  • 21. Lei Zhao,Dong Mi,Yeqing Sun: A novel multitarget model of radiation-induced cell killing based on the Gaussian distribution, Journal of Theoretical Biology, Vol. 420, no.7, pp. 135-143, 2017.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f82c0d7e-06c9-49f4-a178-118892bae20b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.