PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the Water Quality Index to Assess Groundwater Quality in the Bou Dhar Mining District in Beni Tajjit (High Atlas, Morocco)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water scarcity remains the main problem in Morocco, making water resource conservation paramount. The objective of this study is to shed light on how mining impacts the region of Beni Tajjit’s groundwater resources, which are used for irrigation and watering, which includes the Bou Dhar mining district, known for its vast lead and zinc sulfide deposits. The oxidation of sulfide-rich mine tailings generates acid water loaded with sulfates, creating acid mine drainage (AMD), which hurts aquatic ecosystems and the environment through trace metals elements (TME). Hence the need to assess the possible contamination of aquifers by metallic pollutants. This work can help water managers make appropriate decisions for controlling the quality of the groundwater in the Beni Tajjit area. During this study, we adopted a method: the Water Quality Index (WQI), designed to indicate the overall level of water quality by aggregating various weighted measurements. Five samples representing water sources around the mine tailings were taken and analyzed. Their values of dissolved oxygen, electrical conductivity and pH were measured on-site. The results allow us to classify the water into good and bad categories. They showed that the TME values were practically lower than the maximum permitted level according to WHO norms and Moroccan irrigation standards. The main reason for this may be due to the carbonate geological context of the site, which buffers acidity and thus forms a chemical barrier against the transfer of TME to the aquifer. The high chlorine levels appear due to geochemical background or anthropogenies contaminations. The sulfate values recorded are related to the leaching of sulfide minerals from mine tailings.
Twórcy
  • Research Team: Biology, Environment and Health, Faculty of Science and Technology of Errachidia, Moulay Ismail University of Meknes, Marjane 2, BP: 298, Meknes 50050, Morocco
  • Laboratory of Applied Organic Chemistry, Faculty of Science and Technology, B.P. 2202, Fez, Morocco
  • Research Team: Biology, Environment and Health, Faculty of Science and Technology of Errachidia, Moulay Ismail University of Meknes, Marjane 2, BP: 298, Meknes 50050, Morocco
  • Research Team: Biology, Environment and Health, Faculty of Science and Technology of Errachidia, Moulay Ismail University of Meknes, Marjane 2, BP: 298, Meknes 50050, Morocco
Bibliografia
  • 1. Abdellaoui M., Abdaoui A., Boukhoubza F., Ait Boughrous A. 2023. Groundwater Quality in the Vicinity of an Abandoned Mining Site – The M’fis Mine, Southeast of Morocco. Ecological Engineering & Environmental Technology. 24(6). 292–299. doi:10.12912/27197050/169386
  • 2. Ahmed S., Mulhim M., Qureshi F., Akhtar N., Lagudu S. 2022. Reckoning Groundwater Quality and Hydrogeochemical Processes for Drinking and Irrigation Purposes under the Influence of Anthropogenic Activities, North India. Pollutants 2022, 2(4), 486–509 https://doi.org/10.3390/pollutants2040032
  • 3. Alkaladi A., Afifi M., Ali H., Saddick S. 2020. Hormonal and molecular alterations induced by sublethal toxicity of zinc oxide nanoparticles on Oreochromis niloticus. Saudi J Biol Sci. 27(5):1296–1301. https://doi: 10.1016/j.sjbs.2020.01.010
  • 4. Araya N., Kraslawski A., Cisternas L.A. 2020. Towards mine tailings valorization: Recovery of critical materials from Chilean mine tailings. Journal of Cleaner Production. 263,121555, https://doi.org/10.1016/j.jclepro.2020.121555
  • 5. Ayejoto D.A., Egbueri J. C. 2023. Human health risk assessment of nitrate and heavy metals in urban groundwater in Southeast Nigeria. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2023.06.008
  • 6. Badr F.M., El-Habit O. 2018. Heavy Metal Toxicity Affecting Fertility and Reproduction of Males. Bioenvironmental Issues Affecting Men’s Reproductive and Sexual Health. Academic Press. 293-304. https://doi.org/10.1016/B978-0-12-801299-4.00018-9
  • 7. Bahadoran Z., Mirmiran P., Ghasemi A., Kabir A., Azizi F., Hadaegh F. 2015. Is dietary nitrate/nitrite exposure a risk factor for development of thyroid abnormality? A systematic review and meta-analysis, Nitric Oxide, 47, 65–76. https://doi.org/10.1016/j.niox.2015.04.002
  • 8. Balamurugana P., Kumarb P.S., Shankarc K., Sajil Kumar P.J. 2020. Impact of climate and anthropogenic activities on groundwater quality for domestic and irrigation purposes in Attur region, Tamilnadu, India. Desalination and Water Treatment. 208, 2020, 172–195. https://doi.org/10.5004/dwt.2020.26452
  • 9. Bao Z., Al T.l, Couillard M., Poirier G., Bain J., Shrimpton H.K., Finfrock Y.Z., Lanzirotti A., Paktunc D., Saurette E., Hu Y., Ptacek C.J., Blowes D.W. 2021. A cross scale investigation of galena oxidation and controls on mobilization of lead in mine waste rock. Journal of Hazardous Materials. 412, 125130. https://doi.org/10.1016/j.jhazmat.2021.125130
  • 10. Batabyal A.K. and Chakraborty S. 2015. Hydrogeo-chemistry and water quality index in the assessment of groundwater quality for drinking uses. Water Environment Research. 87(7), 607–617. https://doi:10.2175/106143015x14212658613956
  • 11. Beaume J., Braconnier A., Dolley-Hitze T., Bertocchio J.P. 2018. Bicarbonate: From physiology to treatment for all clinicians. Néphrologie & Thérapeutique. 14 (1). 13.23. https://doi.org/10.1016/j.nephro.2017.02.014
  • 12. Beck K.K., Mariani M., Fletcher M.-S., Schneider L., Aquino-López M.A., Gadd P.S., Heijnis H., Saunders K.M., Zawadzki A. 2020. The impacts of intensive mining on terrestrial and aquatic eco-systems: A case of sediment pollution and calcium decline in cool temperate Tasmania, Australia, Environmental Pollution. 265. A. 114695. https://doi.org/10.1016/j.envpol.2020.114695
  • 13. Bondu R., Casiot C., Pistre S., Batiot-Guilhe C. 2023. Impact of past mining activities on water quality in a karst area in the Cévennes region, Southern France Science of The Total Environment. 873. 162274. https://doi.org/10.1016/j.scitotenv.2023.162274
  • 14.Boum-Nkot S.N, Nlend B., Komba D., Nkoue Ndondo G.R., Bello M., Fongoh E.J., Ntamak-Nida M.-J., Etame J. 2023. Hydrochemistry and assessment of heavy metals groundwater contamination in an industrialized city of sub-Saharan Africa (Douala, Cameroon). Implication on human health. Hydro Research. 6, 52–64. https://doi.org/10.1016/j.hydres.2023.01.003
  • 15. Braver-Sewradj S.P.D., Benthem J.V., Staal Y.C.M., Ezendam J., Piersma A.H., Hessel EVS. 2021. Occupational exposure to hexavalent chromium. Part II. Hazard assessment of carcinogenic effects. Regulatory Toxicology and Pharmacology. 126. 105045. https://doi.org/10.1016/j.yrtph.2021.105045
  • 16. Chao X., Witthaus L., Bingner R., Jia Y., Locke M., Lizotte R. 2023. An integrated watershed and water quality modeling system to study lake water quality responses to agricultural management practices. Environmental Modelling & Software, 164, 105691. https://doi.org/10.1016/j.envsoft.2023.105691
  • 17.Collin M.S., Venkatraman S.K., Vijayakumar N., Kanimozhi V, Arbaaz S.M., Stacey R.G.S., Anusha J., Choudhary R., Lvov V., Tovar G.I., Senatov F., Koppala S., Swamiappan S. 2022. Bioaccumulation of lead (Pb) and its effects on human: A review, Journal of Hazardous Materials Advances.7. 100094. https://doi.org/10.1016/j.hazadv.2022.100094
  • 18.Corré W.J., Van Beek C.L., Van Groenigen J.W. 2014. Nitrate leaching and apparent recovery of urine-N in grassland on sandy soils in the Netherlands, NJAS - Wageningen Journal of Life Sciences, 70–71.25-32. https://doi.org/10.1016/j.njas.2014.02.001
  • 19. Covatti G., T. Grischek T. 2021. Sources and behavior of ammonium during riverbank filtration. Water Research.191. 116788. https://doi.org/10.1016/j.watres.2020.116788
  • 20. Dede O. T., Telci I. T., Aral, M. 2013. The Use of Water Quality Index Models for the Evaluation of Surface Water Quality: A Case Study for Kirmir Basin, Ankara, Turkey. Water Qual Expo Health,5, 41–56. https://doi.10.1007/s12403–013–0085–3
  • 21. Dutta N., Thakur B.K., Nurujjaman M., Debnath K., Bal D.P.2022. An assessment of the water quality index (WQI) of drinking water in the Eastern Himalayas of South Sikkim, India. Groundwater for Sustainable Development. 17, 100735. https://doi.org/10.1016/j.gsd.2022.100735
  • 22. Effendi H., Romanto, Wardiatno Y. 2015. Water Quality Status of Ciambulawung River, Banten Province, Based on Pollution Index and NSF-WQI. Procedia Environmental Sciences, 24, 228–237. https://doi.org/10.1016/j.proenv.2015.03.030
  • 23. EFSA NDA Panel. 2014. Scientific Opinion on Dietary Reference Values for zinc. European Commission. EFSA-Q-2011-01233. https://doi10.2903/j.efsa.2014.3844
  • 24. El Alaoui L., Dekayir A., Rouai M., Benyassine E. 2021. Lead, zinc and arsenic contamination of pit lake waters in the Zeida abandoned mine (High Moulouya, Morocco). Geochemistry: Exploration, Environment, Analysis. 21(4) https://10.1144/geochem2021-009
  • 25. El Amari K., Valera P., Hibti M., Pretti S., Marcello A., Essarraj S. 2014. Impact of mine tailings on surrounding soils and ground water: Case of Kettara old mine, Morocco. Journal of African Earth Sciences, 100, 437–449 https://doi.org/10.1016/j.jafrearsci.2014.07.017
  • 26. Espinoza-Quiñones F.R., Módenes A.N., de Pauli, A.R., Palacio S.M. 2015. Analysis of Trace Elements in Groundwater Using ICP-OES and TXRF Techniques and Its Compliance with Brazilian Protection Standards. Water Air Soil Pollut 226 (32). https://doi.org/10.1007/s11270-015-2315-8
  • 27. Fasae K.D., Abolaji A.O., Faloye T.R., Odunsi A.Y., Oyetayo B.O., Enya J.I., Rotimi J.A., Akinyemi R.O., Whitworth A.J., Aschner M. 2021. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: Limitations, and current and future perspectives. Journal of Trace Elements in Medicine and Biology. 67.126779. https://doi.org/10.1016/j.jtemb.2021.126779
  • 28. Gu X., Lin C., Liu Z., Chu Z., Ouyang W., He M., Liu X. 2022. Heavy metal distribution in Chinese coastal sediments and organisms: Human impacts, probabilistic risks and sensitivity analysis. Journal of Hazardous Materials Advances. 7. 100147. https://doi.org/10.1016/j.hazadv.2022.100147
  • 29. Ibrahim M.N.2019. Assessing Groundwater Quality for Drinking Purpose in Jordan: Application of Water Quality Index. Journal of Ecological Engineering. 20 (3) 101–111. https://doi.org/10.12911/22998993/99740
  • 30. Jiang C., Cheng L., Li C., Zheng L. 2022. A hydrochemical and multi-isotopic study of ground-water sulfate origin and contribution in the coal mining area. Ecotoxicology and Environmental Safety. 248.114286. https://doi.org/10.1016/j.ecoenv.2022.114286
  • 31. Jiao Y., Zhang C., Su P., Tang Y., Huang Z., Ma T. 2023. A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Safety and Environmental Protection, 170, 1240–1260. https://doi.org/10.1016/j.psep.2022.12.083
  • 32. Jomova K., Makova M., Alomar S.Y., Alwasel S.H., Nepovimova E., Kuca K., Rhodes CJ., Valko M. 2022. Essential metals in health and disease. Chemico-Biological Interactions. 367.110173. https://doi.org/10.1016/j.cbi.2022.110173
  • 33. Kadam A., Wagh V., Jacobs J., Patil S., Pawar N., Umrikar B., Sankhua R., Kumar S. 2021. Integrated approach for the evaluation of groundwater quality through hydro geochemistry and human health risk from Shivganga river basin, Pune, Maharashtra, India. Environmental Science and Pollution Research. 29, 4311–4333. https://doi.org/10.1007/s11356-021-15554-2
  • 34. Kanwar A., Sharma A. 2022. A review on role of zinc as a potent immunity boosting agent. Materials Today: Proceedings. 68 (4). 880-885. https://doi.org/10.1016/j.matpr.2022.06.423
  • 35. Karacan C.Ö., Erten O., Martín-Fernández J.A. 2023. Assessment of resource potential from mine tailings using geostatistical modeling for compositions: A methodology and application to Katherine Mine site, Arizona, USA. Journal of Geochemical Exploration. 245, 107142. https://doi.org/10.1016/j.gexplo.2022.107142
  • 36. Kayaalti Z., Akyüzlü D.K., Söylemezoğlu T. 2015. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels. Environmental Research. 137. 8–13. https://doi.org/10.1016/j.envres.2014.11.008
  • 37. Kessasra F., Dounyazed Benabes D., Seraoui S., Chetibi N., Mesbah M., Khaled-Khodja S., Foughalia A. 2021. Groundwater flow and chloride transport modeling of the alluvial aquifer of lower Soummam Valley, Béjaia, North-East of Algeria. Journal of African Earth Sciences. 173.104023. https://doi.org/10.1016/j.jafrearsci.2020.104023
  • 38. Khatun U., Intekhab A., Dhak D. 2022. Effect of uncontrolled fertilization and heavy metal toxicity associated with arsenic (As), lead (Pb) and cadmium (Cd), and possible remediation. Toxicology. 477. 153274. https://doi.org/10.1016/j.tox.2022.153274
  • 39. Kim J., Seo S., Kim Y. 2018. Review of carcinogenicity of hexavalent chrome and proposal of revising approval standards for an occupational cancer in Korea. Ann of Occup and Environ Med. 30(7) https://doi.org/10.1186/s40557-018-0215-2
  • 40. Kouadri S., Kateb S., Zegait R. 2021. Spatial and temporal model for WQI prediction based on back-propagation neural network, application on EL MERK region (Algerian southeast). Journal of the Saudi Society of Agricultural Sciences. 20 (5) 324–336. https://doi.org/10.1016/j.jssas.2021.03.004
  • 41. Krishan G., Kumar M., Rao M.S., Garg R., Yadav B.K., Kansal M.L., Singh S., Bradley A., Muste M., Sharma L.M. 2022. Integrated approach for the investigation of groundwater quality through hydrochemistry and water quality index (WQI), Urban Climate, 47, 101383. https://doi.org/10.1016/j.uclim.2022.101383
  • 42. Li P., Xu J., Shi Y., Ye Y., Chen K., Yang J., Wu Y. 2014. Association between zinc intake and risk of digestive tract cancers: A systematic review and meta-analysis. Clinical Nutrition. 33 (3). 415–420. https://doi.org/10.1016/j.clnu.2013.10.001
  • 43. Li X., Liu Y, Yang W., Ma B., Chen Y., Wang C. 2022. Phase transformation and roasting kinetics of cobalt-rich copper sulfide ore in oxygen atmosphere assisted by sodium sulfate. Journal of Industrial and Engineering Chemistry. 116, 217–228. https://doi.org/10.1016/j.jiec.2022.09.012
  • 44. Linssen R., Slinkert T., Buisman C.J.N., Klok J.B.M., Heijne A. 2023. Anaerobic sulphide removal by haloalkaline sulphide oxidising bacteria. Bioresource Technology, 369. 128435. https://doi.org/10.1016/j.biortech.2022.128435
  • 45. Little A.J., Sivarajah B., Frendo C., Sprague D.D., Smol J.P., Vermaire J.C. 2020. The impacts of century-old, arsenic-rich mine tailings on multitrophic level biological assemblages in lakes from Cobalt (Ontario, Canada). Science of The Total Environment, 709, 136212. https://doi.org/10.1016/j.scitotenv.2019.136212
  • 46. Lozano-Bilbao E., Domínguez D., González J.A., Lorenzo J.M., Lozano G., Hardisson A., Rubio C., Weller D.G., Paz S., Gutiérrez A. J. 2021. Risk assessment and study of trace/heavy metals in three species of fish of commercial interest on the island of El Hierro (Canary Islands, eastern-central Atlantic). Journal of Food Composition and Analysis, 99.103855. https://doi.org/10.1016/j.jfca.2021.103855
  • 47. Ma Z., Li H., Ye Z., Wen J., Hu Y., Liu Y.2020. Application of modified water quality index (WQI) in the assessment of coastal water quality in main aquaculture areas of Dalian, China. Marine Pollution Bulletin. 157, 111285. https://doi.org/10.1016/j.marpolbul.2020.111285
  • 48. Mao H., Wang C., Qu S., Liao F., Wang G., Shi Z.2023. Source and evolution of sulfate in the multi-layer groundwater system in an abandoned mine—Insight from stable isotopes and Bayesian isotope mixing model. Science of The Total Environment, 859, (2).160368. https://doi.org/10.1016/j.scitotenv.2022.160368
  • 49. Maria R., Iskandarsyah T.Y.W.M., Suganda B.R., Rusydi A.F., Hendarmawan H. 2022. Impact of natural conditions and anthropogenic activities on groundwater quality in Puntang volcanic area, West Java, Indonesia. IOP Conf. Ser.: Earth Environ. Sci. 1047 012037. https://doi.org/10.1088/1755-1315/1047/1/012037
  • 50. Miah M.R., Ijomone O.M., Okoh C.O.A., Ijomone O.K., Akingbade G.T., Ke T., Krum B., Martins AC., Akinyemi A., Aranoff N., Soares FAA., Bowman AB., Aschner M. 2020. The effects of manganese overexposure on brain health. Neurochemistry International. 135. 104688. https://doi.org/10.1016/j.neuint.2020.104688
  • 51. Miao Z., Carroll K.C., Brusseau M.L. 2013. Characterization and quantification of groundwater sulfate sources at a mining site in an arid climate: The Monument Valley site in Arizona, USA. Journal of Hydrology. 504. 20–215. https://doi.org/10.1016/j.jhydrol.2013.09.030
  • 52. Simpson M.J. 2023. Application of metabolomic methods to evaluate the impact of pollutants on soil organisms: Recent progress and future perspectives. Current Opinion in Environmental Science & Health, 31,100431. https://doi.org/10.1016/j.coesh.2022.100431
  • 53. Mohan S., Kumar K.P. 2016. Waste load allocation using machine scheduling: model application. Environ. Processes. 3(1) 139-151. https://doi.org/10.1007/s40710-016-0122-x
  • 54. Munford K.E., Gilbert-Parkes S., Mykytczuk N.C.S., Basiliko N., Yakimovich K.M., Poulain A., Watmough S.A. 2023. How arsenic contamination influences downslope wetland plant and microbial community structure and function, Science of The Total Environment. 876, 162839. https://doi.org/10.1016/j.scitotenv.2023.162839
  • 55. Okewale I.A., Grobler H. 2023. Mechanics of compression in the reconstituted and intact shale with a transitional mode of behaviour. Geosystems and Geoenvironment. 2(1) 100122. https://doi.org/10.1016/j.geogeo.2022.100122
  • 56. Ottoni C.A., Lima Neto M.C., Léo P., Ortolan B.D., Barbieri E., De Souza A.O. 2020. Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms, Chemosphere. 239, 124698. https://doi.org/10.1016/j.chemosphere.2019.124698
  • 57. Pajarillo E.A.B., Lee E., Kang D.K. 2021. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper, Animal Nutrition, Volume 7, Issue 3, 2021, Pages 750–761. https://doi.org/10.1016/j.aninu.2021.03.005
  • 58. Peyman, N., Tavakoly Sany, S.B., Tajfard, M., Hashim, R., Rezayi, M., Karlen, D.J. 2017. The status and characteristics of eutrophication in tropical coastal water. Environmental Science: Processes and Impacts. 19(8). 1086–1103. https://doi.org/10.1039/C7EM00200A
  • 59. Ponsadailakshmi S., Sankari S.G., Prasanna S.M., Madhurambal G. 2018. Evaluation of water quality suitability for drinking using drinking water quality index in Nagapattinam district, Tamil Nadu in Southern India. Groundwater for Sustainable Development, 6, 43–49. https://doi.org/10.1016/j.gsd.2017.10.005
  • 60. Prasad B., Maiti D. & Singh K.K.K. 2019. Impact of Fly Ash Placement in an Abandoned Opencast Mine on Surface and Ground Water Quality: A Case Study. Mine Water Environ 38, 72–80. https://doi.org/10.1007/s10230-018-00577-y
  • 61. Qiao J., Zhu Y.,Jia X., Shao M., Niu X., Liu J. 2020. Distributions of arsenic and other heavy metals, and health risk assessments for groundwater in the Guanzhong plain region of China. Environmental Research. 181. 108957. https://doi.org/10.1016/j.envres.2019.108957
  • 62. Qu S., Duan L., Shi Z., Liang X., Lv S., Wang G., Liu T., Yu R. 2022. Hydrochemical assessments and driving forces of groundwater quality and potential health risks of sulfate in a coalfield, northern Ordos Basin, China. Science of The Total Environment. 835. 155519. https://doi.org/10.1016/j.scitotenv.2022.155519
  • 63. Raddi Y., Aarar M., Rjimati E., Ibouh H., & Michard A. 2011. Le Jbel Bou Dhar, distrit MVT du Haut Atlas oriental. Nouveaux Guides Géologiques et Miniers du Maroc. Volume 9. Note et Mém. Serv. Géol. N° 564. https://www.researchgate.net/publication/311456597
  • 64. Rddad L., Bouhlel S. 2016. The Bou Dahar Jurassic carbonate-hosted Pb–Zn–Ba deposits (Oriental High Atlas, Morocco): Fluid-inclusion and C–O–S–Pb isotope studies. Ore Geology Reviews. 72 (1) 1072–1087. https://doi.org/10.1016/j.oregeorev.2015.08.011
  • 65. Ruiz-Sánchez A., Tapia J.C.J., Lapidus G.T. 2023. Evaluation of acid mine drainage (AMD) from tailings and their valorization by copper recovery. Minerals Engineering. 191, 107979. https://doi.org/10.1016/j.mineng.2022.107979
  • 66. Santana C.S., Olivares D.M., Silva V.H.C., Luzardo F.H.M., Velasco F.G., De Jesus RM. 2020. Assessment of water resources pollution associated with mining activity in a semi-arid region, Journal of Environmental Management, 273. 111148. https://doi.org/10.1016/j.jenvman.2020.111148
  • 67. Sarker S.K., Pownceby M.I., Bruckard W., Haque N., Bhuiyan M., Pramanik B.K. 2023. Unlocking the potential of sulphide tailings: A comprehensive characterization study for critical mineral recovery, Chemosphere, 328, 138582. https://doi.org/10.1016/j.chemosphere.2023.138582
  • 68. Song W., Gu H., Song W., Li F.P., Cheng S.P., Zhang Y., Ai Y.J. 2023. Environmental assessments in dense mining areas using remote sensing informat4ion over Qian’an and Qianxi regions. Ecological Indicators, 146, 109814. https://doi.org/10.1016/j.ecolind.2022.109814
  • 69. Stoica C., Dinu L.R., Lucaciu I.E., Oncu V., Gheorghe S., Lazar M.N. 2022. Sensitivity of Pathogenic Bacteria Strains to Treated Mine Water. Int. J. Environ. Res. Public Health. 19(23), 15535. https://doi.org/10.3390/ijerph192315535
  • 70. Sunkari E.D., Seidu J., Ewusi A. 2022.Hydrogeo-chemical evolution and assessment of groundwater quality in the Togo and Dahomeyan aquifers, Greater Accra Region, Ghana. Environmental Research. 208.112679. https://doi.org/10.1016/j.envres.2022.112679
  • 71. Sutadian A.D., Muttil N.,Yilmaz A.G., Perera B.J.C. 2017. Using the Analytic Hierarchy Process to identify parameter weights for developing a water quality index. Ecological Indicators, Volume 75, 2017, 220–233. https://doi.org/10.1016/j.ecolind.2016.12.043
  • 72. Szymczycha B., Kroeger K.D., Crusius J., Bratton J.F. 2017. Depth of the vadose zone controls aquifer biogeochemical conditions and extent of anthropogenic nitrogen removal, Water Research. 123, 794–801. https://doi.org/10.1016/j.watres.2017.06.048
  • 73. Tanya O’Garra. 2017. Economic value of ecosystem services, minerals and oil in a melting Arctic: A preliminary assessment. Ecosystem Services. 24. 180–186. https://doi.org/10.1016/j.ecoser.2017.02.024
  • 74. Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. 2012. Heavy Metal Toxicity and the Environment. In: Luch, A. (eds) Molecular. Clinical and Environmental Toxicology. Experientia Supplementum. 101. 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6
  • 75. Terzić J., Marina Filipović M., Ivana Boljat I., Ana Selak A., Jasmina Lukač Reberski J. 2021. Groundwater level and electrical conductivity datasets acquired within pumping tests on Ilovik Island in Croatia. Data in Brief. 37.107180. https://doi.org/10.1016/j.dib.2021.107180
  • 76. Thanigaivel S., Vickram S., Dey N., Jeyanthi P., Subbaiya R., Kim W., Govarthanan M., Karmegam N. 2023. Ecological disturbances and abundance of anthropogenic pollutants in the aquatic ecosystem: Critical review of impact assessment on the aquatic animals. Chemosphere. 313. 137475. https://doi.org/10.1016/j.chemosphere.2022.137475
  • 77. Tiwari A.K., Singh P., Mahato M.K. 2014. GIS-Based Evaluation of Water Quality Index of Ground Water Resources in West Bokaro Coalfield, India. Current World Environment 9(3), 843–850 https://doi:10.12944/CWE.9.3.35
  • 78. Tsai C.M., Chen J.W., Lin W.C. 2020. Effects of Acanthamoeba castellanii on the dissolved oxygen and the microbial community under the experimental aquatic model. Experimental Parasitology.218. 107985. https://doi.org/10.1016/j.exppara.2020.107985
  • 79. Uddin M.G., Nash S., Rahman A., Olbert A I. 2023. Assessing optimization techniques for improving water quality model. Journal of Cleaner Production, 385, 135671. https://doi.org/10.1016/j.jclepro.2022.135671
  • 80. Varma K., Tripathi P., Upadhyaya S., Srivastava A., Ravi N.K., Singhal A., Jha P.K. 2022. Assessment of mass bathing event (Kumbh- 2019) impact on the river water quality by using multivariate analysis and water quality index (WQI) techniques at Sangam (Prayagraj), India. Groundwater for Sustainable Development. 17, 100750,. https://doi.org/10.1016/j.gsd.2022.100750
  • 81. Vasanthavigar M., Srinivasamoorthy K., Chidambaram S. 2010. Application of Water Quality Index for Groundwater Quality Assessment: Thirumanimuttar Sub-Basin, Tamilnadu, India. Environmental Monitoring and Assessment, 171, 595–609. http://dx.doi.org/10.1007/s10661-009-1302-1
  • 82. Veloso R.W., Vargas de Mello J.M., Abrahão W.A.P., Glasauer S. 2019. Seasonal impacts on arsenic mobility and geochemistry in streams surrounding a gold mineralization area, Paracatu, Brazil. Applied Geochemistry, 109, 104390. https://doi.org/10.1016/j.apgeochem.2019.104390
  • 83. Wang C., Liu R., Zhai Q., Dong W., Xie Z., Sun W., Hu W. 2023. Prospects of pulp aeration for the cleaner production of pyrrhotite-rich type copper sulfide ore: Mechanism and application, Journal of Cleaner Production. 406, 136921. https://doi.org/10.1016/j.jclepro.2023.136921
  • 84. WHO 2006. Establishing National Drinking-Water Standards. Guidelines for drinking-water quality training pack. Retrieved August 12, 2018. http://www.who.int/water_sanitation_health/dwq/S17.pdf
  • 85. Yan J., Li R., Ali M.U., Wang C., Wang B., Jin X., Shao M., Li P., Zhang L., Feng X. 2023. Mercury migration to surface water from remediated mine waste and impacts of rainfall in a karst area – Evidence from Hg isotopes. Water Research. 230. 119592. https://doi.org/10.1016/j.watres.2023.119592
  • 86. Zaghloul G.Y., Zaghloul A.Y., Hamed M.A., El-Moselhy K.M., Ezz El-Din H.M. 2023. Water quality assessment for Northern Egyptian lakes (Bardawil, Manzala and Burullus) using NSF-WQI Index. Regional Studies in Marine Science. 64. 103010..https://doi.org/10.1016/j.rsma.2023.103010
  • 87. Zereg S., Boudoukha A., Benaabidate L. 2018. Impacts of natural conditions and anthropogenic activities on groundwater quality in Tebessa plain, Algeria. Sustainable Environment Research, 28(6), 340–349. https://doi.org/10.1016/j.serj.2018.05.003
  • 88. Zhao L., Ren T., Wang N. 2017. Groundwater impact of open cut coal mine and an assessment methodology: A case study in NSW. International Journal of Mining Science and Technology, 27(5), 861–866, https://doi.org/10.1016/j.ijmst.2017.07.008
  • 89. Zheng L., Qiu Z., Tang Q., Li Y. 2019. Micromorphology and environmental behavior of oxide deposit layers in sulfide-rich tailings in Tongling, Anhui Province, China, Environmental Pollution, 251, 484–492 https://doi.org/10.1016/j.envpol.2019.04.131
  • 90. Zhou Y., Lian Y., Liu T., Jin X., Wang Z., Liu X., Zhou M., Jing D., Yin W., Feng J., Wang H., Zhang D. 2023. Impacts of high-quality coal mine drainage recycling for replenishment of aquatic ecosystems in arid regions of China: Bacterial community responses. Environmental Research. 223, 115083, https://doi.org/10.1016/j.envres.2022.115083
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8272c76-a3e6-421e-9eb3-5b85bac96794
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.