PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Lugol's solution and Fe3O4 nanoparticles as contrast agents for tumor spheroid imaging using microcomputed tomography

Identyfikatory
Warianty tytułu
Konferencja
4th Jagiellonian Symposium on Advances in Particle Physics and Medicine, Krakow, 10-15 July 2022
Języki publikacji
EN
Abstrakty
EN
Background Lugol’s solution is well known for its unique contrasting properties to biological samples in in microcomputed tomography imaging. On the Rother hand, iron oxide nanoparticles (IONPs), which have much lower attenuation capabilities to X-ray radiation show decent cell penetration and accumulation properties, are increasingly being used as quantitative contrast agents in biology and medicine. In our research, they were used to stain 3D cell structures called spheroids. Aim In this study, the micro computed tomography (µCT) technique was used to visualize and compare the uptake and accumulation of two contrast agents, Lugol’s solution and iron (II, III) oxide nanoparticles (IONPs) in the in vitro human spheroid tumour model. Methods The metastatic human melanoma cell line WM266-4 was cultured, first under standard 2D conditions, and after reaching 90% confluence cells was seeded in a low adhesive plate, which allows spheroid formation. On the 7th day of growth, the spheroids were transferred to the tubes and stained with IONPs or Lugol’s solution and subjected to µCT imaging. Results Our research allows visualization of the regions of absorption at the level of single cells, with relatively short incubation times - 24h - for Lugol’s solution. IONPs proved to be useful only in high concentrations (1 mg/ml) and long incubation times (96h). Conclusions When comparing the reconstructed visualizations of the distribution of these stating agents, it is worth noting that Lugol’s solution spreads evenly throughout the spheroids, whereas IONPs (regardless of their size 5 and 30 nm) accumulate only in the outer layer of the spheroid structure.
Słowa kluczowe
Rocznik
Strony
158--162
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University ul. Łojasiewicza 11, 30-348 Kraków, Poland
  • Center for Theranostics, Jagiellonian University ul. Kopernika 40, 31-034 Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University ul. Łojasiewicza 11, 30-348 Kraków, Poland
  • Center for Theranostics, Jagiellonian University ul. Kopernika 40, 31-034 Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University ul. Łojasiewicza 11, 30-348 Kraków, Poland
  • Center for Theranostics, Jagiellonian University ul. Kopernika 40, 31-034 Kraków, Poland
  • Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University ul. Łojasiewicza 11, 30-348 Kraków, Poland
  • Center for Theranostics, Jagiellonian University ul. Kopernika 40, 31-034 Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Department of Experimental Particle Physics and Applications, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11 St, 30-348 Krakow, Poland
  • Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University ul. Łojasiewicza 11, 30- 348 Kraków, Poland
  • Center for Theranostics, Jagiellonian University ul. Kopernika 40, 31-034 Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
Bibliografia
  • [1] Leszczyński B, Skrzat J, Kozerska M, Wróbel A, Walocha J. Three dimensional visualisation and morphometry of bone samples studied in microcomputed tomography (micro-CT). Folia Morphol. 2014;73(4):422-428.
  • [2] Leszczyński B, Sojka-Leszczyńska P, Wojtysiak D, Wróbel A, Pędrys R. Visualization of porcine eye anatomy by X-ray microtomography. Exp Eye Res. 2018;167:51-55.
  • [3] Stauber M, Müller R. Micro-computed tomography: a method for the non-destructive evaluation of the threedimensional structure of biological specimens. Methods Mol Biol. 2008;455:273-292.
  • [4] Forrest LJ. Computed Tomography Imaging in Oncology. Vet Clin North Am Small Anim Pract. 2016;46(3):499.
  • [5] Karimi H, Leszczyński B, Kołodziej T, Kubicz E, Przybyło M, Stępień E. X-ray microtomography as a new approach for imaging and analysis of tumor spheroids. Micron [Internet] 2020;137:102917.
  • [6] Panek D, Leszczyński B, Wojtysiak D, Drąg-Kozak E, Stępień E. Micro-computed tomography for analysis of heavy metal accumulation in the opercula. Micron [Internet]. 2022;160:103327. Available from: https://www.sciencedirect.com/science/article/pii/S0968 432822001238.
  • [7] Stępień E, Karimi H, Leszczyński B, Szczepanek M. Melanoma Spheroids as a Model for Cancer Imaging Study. Acta Physica Polonica. B 51, 2020:159-63.
  • [8] Xia CW, Gan RL, Pan JR, et al. Lugol's IodineEnhanced Micro-CT: A Potential 3-D Imaging Method for Detecting Tongue Squamous Cell Carcinoma Specimens in Surgery. Front Oncol. 2020;10:550171.
  • [9] Dawood Y, Hagoort J, Siadari BA, Ruijter JM, Gunst QD, Lobe NHJ, et al. Reducing soft-tissue shrinkage artefacts caused by staining with Lugol's solution. Sci Rep. 2022;12(1):2366.
  • [10] Gottardi W. Iodine and disinfection: theoretical study on mode of action, efficiency, stability, and analytical aspects in the aqueous system. Arch Pharm (Weinheim). 1999;332(5):151-157.
  • [11] Mantlo E, Evans A, Patterson-Fortin L, Boutros J, Smith R, Paessler S. Efficacy of a novel iodine complex solution, CupriDyne, in inactivating SARS-CoV-2. 2020.05.08 [Epub ahead of print].
  • [12] Leyssens L, Pestiaux C, Kerckhofs G. A Review of Ex Vivo X-ray Microfocus Computed Tomography-Based Characterization of the Cardiovascular System. Int J Mol Sci. 2021;22(6):3263.
  • [13] De Bournonville S, Vangrunderbeeck S, Kerckhofs G. Contrast-Enhanced MicroCT for Virtual 3D Anatomical Pathology of Biological Tissues: A Literature Review. Contrast Media Mol Imaging. 2019;2019:8617406.
  • [14] Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Frontiers in Pharmacology. 2015;6:1663-9812.
  • [15] Alphandéry E., Iron oxide nanoparticles as multimodal imaging tools, RSC Adv., 2019;9:40577-40587.
  • [16] Janik-Olchawa N, Drozdz A, Ryszawy D, Pudełek M, Planeta K, Setkowicz Z, et al. Comparison of ultrasmall IONPs and Fe salts biocompatibility and activity in multicellular in vitro models. Sci Rep. 2020;10(1).
  • [17] Drozdz A, Matusiak K, Setkowicz Z, et al. FTIR microspectroscopy revealed biochemical changes in liver and kidneys as a result of exposure to low dose of iron oxide nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2020;236:118355.
  • [18] Crețu BE, Dodi G, Shavandi A, Gardikiotis I, Șerban IL, Balan V. Imaging Constructs: The Rise of Iron Oxide Nanoparticles. Molecules. 2021;26(11):3437.
  • [19] Wabler M, Zhu W, Hedayati M, et al. Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content. Int J Hyperthermia. 2014;30(3):192-200.
  • [20] Stępień E. Factors influencing neurite outgrowth in vitro [Ph. D. thesis]. Kraków Jagiellonian University; 1999.
  • [21] Hoopes PJ, Petryk AA, Gimi B, et al. In Vivo Imaging and Quantification of Iron Oxide Nanoparticle Uptake and Biodistribution. Proc SPIE Int Soc Opt Eng. 2012;8317:83170.
  • [22] Lamichhane N, Sharma S, Parul, Verma AK, Roy I, Sen T. Iron Oxide-Based Magneto-Optical Nanocomposites for In Vivo Biomedical Applications. Biomedicines. 2021;9(3):288.
Uwagi
Opublikowane przez Sciendo. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f825381d-af2d-40cb-bb62-4a56c788ce1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.