PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing mechanical properties of PVC composites through surface composite modified calcium sulfate whiskers

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To enhance the high-value utilization of industrial wastewater, this study used ammonium sulfate wastewater discharged from a rare earth plant as a raw material for producing anhydrous calcium sulfate whiskers (CSWs) through a hydrothermal method. Subsequently, the whiskers underwent modification using a C18H36O2–titanate coupling agent. The modification mechanism of CSW was investigated by comparing the surface contact angle before and after modification, along with characterization and analysis involving X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric-differential thermal analysis, and X-ray photoelectron spectroscopy. Finally, composite-modified calcium sulfate whiskers (CMCSWs) were incorporated into polyvinyl chloride (PVC) composites, and their mechanical properties were evaluated. The results indicated that at a modifier dosage of 15%, a modification time of 25 min, a modification temperature of 80°C, a stirring speed of 400 rpm, a drying temperature of 100°C, and a C18H36O2-to-titanate coupling agent compound ratio of 1:2, the contact angle reached 124.45°, and a nanoscale hydrophobic layer with a thickness of 15.63 nm was formed on the surface. Regarding PVC reinforcement, the tensile strength and elongation at the break of PVC composite with 15 parts of CMCSW added increased by 73 and 262%, respectively, compared to the material without CSW. This CSW serves as an innovative reinforcing agent for PVC composites. The study developed modified CSW with high hydrophobicity, offering theoretical insights for effectively modifying fiber-type whiskers and their reinforcement in PVC applications.
Wydawca
Rocznik
Strony
55--71
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • School of Metallurgical Future Technology, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Kunduz Shimron Area, Baotou, China
autor
  • School of Metallurgical Future Technology, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Kunduz Shimron Area, Baotou, China
autor
  • School of Metallurgical Future Technology, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Kunduz Shimron Area, Baotou, China
autor
  • School of Metallurgical Future Technology, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Kunduz Shimron Area, Baotou, China
  • School of Metallurgical Future Technology, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Kunduz Shimron Area, Baotou, China
autor
  • School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Kunduz Shimron Area, Baotou, China
  • School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
autor
  • School of Metallurgical Future Technology, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Kunduz Shimron Area, Baotou, China
  • School of Metallurgical Future Technology, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Kunduz Shimron Area, Baotou, China
  • Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Kunduz Shimron Area, Baotou, China
Bibliografia
  • [1] Sudhan Raj, J., Christy, T.V., Darius Gnanaraj, S., Sugozu, B., Influence of calcium sulfate whiskers on the tribological characteristics of automotive brake friction materials, Eng. Sci. Technol. Int. J., 2020, 23(2): 445–451, 10.1016/j.jestch.2019.06.007
  • [2] Yang, N., Xiao, H., Guo, W., Additives-assisted hydrothermal synthesis of calcium sulfate whisker and its growth mechanism, J. Chin. Ceram. Soc., 2014, 4: 539–544, 10.7521/j.issn.0454-5648.2014.04.19
  • [3] Ma, B., Xing, P., Wang, C., Chen, Y., Shao, S., A novel way to synthesize calcium sulfate whiskers with high aspect ratios from concentrated calcium nitrate solution, Mater. Lett., 2018, 219: 1–3, 10.1016/j.matlet.2018.02.025
  • [4] Luo, K., Li, H., Tan, Y., Study on the preparation of calcium sulfate whisker by hydrothermal method, Adv. Mat. Res., 2013, 602: 1369–1372, 10.4028/www.scientific.net/AMR.602-604.1369
  • [5] Chen, Y., Ding, Y., Dong, Y., Liu, Y., Ren, X., Wang, B., et al., Surface modification of calcium sulfate whisker using thiol‐ene click reaction and its application in reinforced silicone rubber, J. Polym. Sci., 2020, 58(4): 624–635, 10.1002/pol.20200016
  • [6] Liu, C., Zhao, Q., Wang, Y., Shi, P., Jiang, M., Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum, Appl. Surf. Sci., 2016, 360: 263–269, 10.1016/j.apsusc.2015.11.032
  • [7] Jiang, Q., Cheng, Y., Cao, X.Y., Wei, R., Zhao, M., Preparation and physical properties of chitosan-coated calcium sulphate whiskers, Chem. Pap., 2014, 68: 1400–1407, 10.2478/s11696-014-0579-x
  • [8] Xiang, G., Liu, T., Zhang, Y., Xue, N., Synthesis of polypropylene composites with modified calcium sulfate whisker prepared from shale vanadium neutralization slag, Results Phys., 2018, 10: 28–35, 10.1016/j.rinp.2018.05.018
  • [9] Lu, Y., Zhang, W., Li, X., Xu, S., Synthesis of new polyether titanate coupling agents with different polyethylene glycol segment lengths and their compatibilization in calcium sulfate whisker/poly (vinyl chloride) composites, RSC Adv., 2017, 7(50): 31628–31640, 10.1039/c7ra03692b
  • [10] Jincheng, W., Lijuan, T., Ding, W., Xi, G., Wenli, H., The modified calcium sulfate whisker is applied in methyl vinyl silicone rubber composites, Polym. Polym Compos., 2012, 20(5): 453–462, 10.1177/096739111202000505
  • [11] Abdellatief, M., Ahmed, Y.M., Taman, M., Elfadaly, E., Tang, Y., Abadel, A.A., Physico-mechanical, thermal insulation properties, and microstructure of geopolymer foam concrete containing sawdust ash and egg shell, J. Build. Eng., 2024, 90: 109374, 10.1016/j.jobe.2024.109374
  • [12] Arya, P., Mathur, V., Patidar, D., Thermo-mechanical performance of PVC/ZnO nanocomposites, Phase Transit., 2017, 90(7): 695–702, 10.1080/01411594.2016.1263991
  • [13] Wang, W., Han, Q., Li, X., Peng, X., Qian, W., Preparation and characterization of PVC matrix composites with biochemical sludge, J. Polym. Environ., 2018, 26: 3197–3201, 10.1007/s10924-018-1210-y
  • [14] Mallem, O.K., Zouai, F., Gumus, O.Y., Benabid, F.Z., Bedeloglu, A.C., Benachour, D., Synergistic effect of talc/calcined kaolin binary fillers on rigid PVC: Improved properties of PVC composites, J. Vinyl. Addit. Technol., 2021, 27(4): 881–893, 10.1002/vnl.21858
  • [15] Qi, Y., Wu, J., Qin, S., Liu, Z., Hu, Y., Zhang, X., et al., Preparation and characterization of anhydrous calcium sulfate whisker, Inorg. Chem. Ind., 2022, 54(10): 109–115, 10.19964/j.issn.1006-4990.2021-0761
  • [16] Qi, Y., Wu, J., Qin, S., Liu, Z., Hu, Y., Zhang, X., et al., Characterization and mechanism of natural rubber composites reinforced by modified calcium sulfate whisker, J. Appl. Polym., 2023, 140(27): e53911, 10.1002/app.53911
  • [17] Yuan, W., Lu, Y., Xu, S., Synthesis of a new titanate coupling agent for the modification of calcium sulfate whisker in poly (vinyl chloride) composite, Materials, 2016, 9(8): 625, 10.3390/ma9080625
  • [18] Lei, M., Ma, B., Lv, D., Wang, C., Asselin, E., Chen, Y., A process for beneficiation of low-grade manganese ore and synchronous preparation of calcium sulfate whiskers during hydrochloric acid regeneration, Hydrometallurgy, 2021, 199: 105533, 10.1016/j.hydromet.2020.105533
  • [19] Lin, S., Tian, Y., Zhang, W., Zhao, T., Zhao, M., Wang, H., Enhanced photocatalytic activity over ZnO supported on calcium sulfate whisker derived from desulfurization gypsum, Korean J. Chem. Eng., 2022, 39(12): 3267–3276, 10.1007/s11814-022-1208-y
  • [20] Lv, Z., Nai, X., Zhu, D., Dong, Y., Li, W., Preparation of anhydrous calcium sulfate whisker by one-step hydrothermal method, J. Synth. Cryst., 2016, 45(3): 612–617, 10.16553/j.cnki.issn1000-985x.2016.03.008
  • [21] Fan, H., Song, X., Xu, Y., Yu, J., Insights into the modification for improving the surface property of calcium sulfate whisker: experimental and DFT simulation study, Appl. Surf. Sci., 2019, 478: 594–600, 10.1016/j.apsusc.2019.01.161
  • [22] Yuan, W., Cui, J., Cai, Y., Xu, S., A novel surface modification for calcium sulfate whisker used for reinforcement of poly (vinyl chloride), J. Polym., 2015, 22: 1–9, 10.1007/s10965-015-0813-4
  • [23] He, B., Lin, X., Zhang, Y., Effect of a novel compound nucleating agent calcium sulfate whisker/β-nucleating agent dicyclohexyl-terephthalamide on crystallization and melting behavior of isotactic polypropylene, J. Therm. Anal. Calorim., 2018, 132: 1145–1152, 10.1007/s10973-018-7043-z
  • [24] Zhou, D., Wei, R., Zhu, Y., Long, H., Huang, B., Wang, Y., et al., Calcium sulfate whisker one-step preparation using semi-dry flue gas desulfurization ash and directional growth control, J. Clean. Prod., 2021, 290: 125754, 10.1016/j.jclepro.2020.125754
  • [25] Cao, B., Wang, X., Zhang, X., Jin, B., Xu, Z., Liu, X., et al., A readily monitored and controllable hydrothermal system for the facile, cost-effective transformation of FGD gypsum to calcium sulfate hemihydrate whiskers, Particuology, 2021, 54: 173–180, 10.1016/j.partic.2020.03.003
  • [26] Lu, Y., Jiang, N., Li, X., Xu, S., Effect of inorganic–organic surface modification of calcium sulfate whiskers on mechanical and thermal properties of calcium sulfate whisker/poly (vinyl chloride) composites, RSC Adv., 2017, 7(73): 46486–46498, 10.1039/c7ra09193a
  • [27] Yuan, W., Cui, J., Xu, S., Mechanical properties and interfacial interaction of modified calcium sulfate whisker/poly (vinyl chloride) composites, J. Mater. Sci. Technol., 2016, 32(12): 1352–1360, 10.1016/j.jmst.2016.05.016
  • [28] Young, R.J., Liu, M., Kinloch, I.A., Li, S., Zhao, X., Vallés, C., Papageorgiou, D.G., The mechanics of reinforcement of polymers by graphene nanoplatelets, Compos. Sci. Technol., 2018, 154: 110–116, 10.1016/j.compscitech.2017.11.007
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f81be61e-55c9-4733-9715-a912e17cbce3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.