PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Occurrence of Sclerotium rolfsii Inducing Sugar Beet Root Rot and its Sustainable Management by Acting on Soil Fertility in Western Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In Morocco, and particularly in the Doukkala irrigated perimeter, sugar beet rot caused by Sclerotium rolfsii is a major limiting factor for the productivity of this crop. The objective of this study was to identify the relationship between the frequency of Sclerotium rolfsii infestation and the quantity of viable sclerotia in the soil on the one hand, and with the different physicochemical parameters of the soil in cropped sugar beet fields on the other hand. In total, 1794 soil samples were collected during a four years period in the whole irrigated perimeter. These samples were analyzed for their sclerotial content. In addition, laboratory analysis of physico-chemical parameters was performed for 94 sugar beet fields in 2019. The study showed that the relative frequency of infestation by Sclerotium rolfsii and the number of viable sclerotia oscillate inversely and present a relative frequency of 45.7, 57.3, 42.3 and 49.5% for 2016, 2017, 2018, and 2019, respectively, and a number of sclerotia of 2.01, 1.65, 2.11 and 1.25 in 250 g of soil for 2016, 2017, 2018 and 2019, respectively. The study showed that the number of viable sclerotia was positively correlated with clay and silt content, soil pH, Mg, K, Fe, Cu, and Mn and negatively correlated with sand, SOM, EC, CaCO3, Zn, B, Ca, NH4 and NO3 contents. The observed decrease in viable sclerotia between 2016 and 2019 can be attributed to the decrease of Fe and Cu in the soil. It is possible that SOM intervenes with its humified fraction in the neutralization of the redox potential of Feand Cu which are involved in the production of sclerotia under oxidative stress. The good control of fertilization, especially organic, allows limiting the production of sclerotia of Sclerotium rolfsii. Data analysis allowed obtaining a significant prediction model of the number of viable sclerotia in the soil according to the physicochemical soil parameters with (R2 = 0.95 at P<0.0001) for only infested fields and (R2 = 0.87 at P<0.0001) for all the fields.
Rocznik
Strony
54--70
Opis fizyczny
Bibliogr. 65 poz., rys., tab.
Twórcy
autor
  • Department of Production, Protection and Plant Biotechnologies Hassan II Agronomic and Veterinary Institute, PO Box 6202 Rabat-Institute 10101, Rabat, Morocco
  • Department of Production, Protection and Plant Biotechnologies Hassan II Agronomic and Veterinary Institute, PO Box 6202 Rabat-Institute 10101, Rabat, Morocco
  • Department of Production, Protection and Plant Biotechnologies Hassan II Agronomic and Veterinary Institute, PO Box 6202 Rabat-Institute 10101, Rabat, Morocco
  • Department of Natural resources and Environment, Hassan II Agronomic and Veterinary Institute, PO Box 6202 Rabat-Institute 10101, Rabat, Morocco
  • National Institute of Agronomic Research, Avenue De La Victoire, Rabat BP 415 Rp, Rabat, 10060, Morocco
  • Laboratory of Geosciences and Environmental Techniques, Department of Earth Sciences, Faculty of Sciences, Chouaïb Doukkali University, BP.20, 24000 El Jadida, Morocco
  • Laboratory of Geosciences and Environmental Techniques, Department of Earth Sciences, Faculty of Sciences, Chouaïb Doukkali University, BP.20, 24000 El Jadida, Morocco
Bibliografia
  • 1. Abbas, H.M.K., Mahmood, R., Khan, S.N., Ali, A. 2021. Effects of fertilizers on growth and sclerotia formation of macrophomina phaseolina (tassi) goid. Bangladesh Journal of Botany, 50(2), 413–416. https://doi.org/10.3329/BJB.V50I2.54099
  • 2. Adams, P.B., Ayers, W.A. 1979. Ecology of Sclerotinia species. Phytopathology, 69(8), 896–899.
  • 3. Asirifi, K.N., Morgan, W.C., Parbery, D.G. 1994. Suppression of Sclerotinia soft rot of lettuce with organic soil amendments. Australian Journal of Experimental Agriculture, 34(1), 131–136.
  • 4. Ayed, F., Jabnoun-Khiareddine, H., Abdallah, R.A. Ben, Daami-Remadi, M. 2020a. Effect of different carbon and nitrogen sources on Sclerotium rolfsii sacc. mycelial growth and sclerotial development. International Journal of Phytopathology, 9(1), 17–27. https://doi.org/10.33687/phytopath.009.01.3066
  • 5. Ayed, F., Jabnoun-Khiareddine, H., Abdallah, R. A.-B., Daami-Remadi, M. 2020b. Effect of Different Carbon and Nitrogen Sources on Sclerotium rolfsii sacc. Mycelial Growth and Sclerotial Development. International Journal of Phytopathology, 9(1), 17–27.
  • 6. Bates, R.G., Roy, R.N., Robinson, R.A. 1973. Buffer Standards of Tris(Hydroxymethyl)methylglycine (“Tricine”) for the Physiological Range pH 7.2 to 8.5. Analytical Chemistry, 45(9), 1663–1666. https://doi.org/10.1021/ac60331a022
  • 7. Beretta, A.N., Silbermann, A.V., Paladino, L., Torres, D., Bassahun, D., Musselli, R., García-Lamohte, A. 2014. Análisis de textura del suelo con hidrómetro: Modificaciones al método de Bouyoucus. Ciencia e Investigacion Agraria, 41(2), 263–271. https://doi.org/10.4067/S0718-16202014000200013
  • 8. Bueno, C.J., Ambrósio, M.M. de Q., Souza, N.L. de. 2007. Produção e avaliação da sobrevivência de estruturas de resistência de fungos fitopatogênicos habitantes do solo. Summa Phytopathologica, 33(1), 47–55.
  • 9. Bushby, H.V.A., Marshall, K.C. 1977. Water status of Rhizobia in relation to their susceptibility to desiccation and to their protection by montmorillonite. Journal of General Microbiology, 99(1), 19–27. https://doi.org/10.1099/00221287-99-1-19
  • 10. Campbell, R., Ephgrave, J.M. 1983. Effect of bentonite clay on the growth of Gaeumannomyces graminis var. tritici and on its interactions with antagonistic bacteria. Journal of General Microbiology, 129(3), 771–777. https://doi.org/10.1099/00221287-129-3-771
  • 11. Cosumar. 2019. De Valeurs Partagées Ans. https://www.cosumar.co.ma/
  • 12. Davet, P. 1996. Vie microbienne du sol et production végétale. Editions Quae.
  • 13. Dutton, M.V, Evans, C.S., Duttonl, M.V., Evans, C.S. 1996. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. J. Microbiol. Downloaded from Www.Nrcresearchpress. Com by Fordham University On, 42(1987), 12. www.nrcresearchpress.com
  • 14. El-Abyad, M.S., Attaby, H., Abu-Taleb, A.M. 1994. Impact of salinity stress on the free amino acid pools of some phytopathogenic fungi. Microbiological Research, 149(3), 309–315. https://doi.org/10.1016/S0944-5013(11)80074-1
  • 15. Eljebri, S., Mounir, M., Faroukh, A.T., Zouahri, A., Tellal, R. 2019. Application of geostatistical methods for the spatial distribution of soils in the irrigated plain of Doukkala, Morocco. Modeling Earth Systems and Environment, 5(2), 669–687. https://doi.org/10.1007/s40808-018-0558-2
  • 16. Garrett, S.D., et al. 1970. Pathogenic root-infecting fungi. Pathogenic Root-Infecting Fungi.
  • 17. Georgiou, C.D. 1997. Lipid peroxidation in Sclerotium rolfsii: A new look into the mechanism of sclerotial biogenesis in fungi. Mycological Research, 101(4), 460–464. https://doi.org/10.1017/S0953756296002882
  • 18. Gerdemann, J.W., Nicolson, T.H. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235–244.
  • 19. Gharbi, Y., Bouazizi, E., Cheffi, M., Ben Amar, F., Triki, M.A. 2020. Investigation of soil-borne fungi, causal agents of olive trees wilt and dieback in Tunisia. Archives of Phytopathology and Plant Protection, 53(17–18), 828–843. https://doi.org/10.1080/03235408.2020.1800559
  • 20. Godara, M., Maheshwari, R., Varshney, S., Varshney, A.K. 2007. Synthesis and characterization of some new coordination compounds of boron with mixed azines. Journal of the Serbian Chemical Society, 72(4), 367–374.
  • 21. Gour, H.N., Pankaj, S., et al. 2010. Evaluation of fungicides in vitro and in vivo against Sclerotium rolfsii Sacc. causing root rot of groundnut. Indian Phytopathology, 63(3), 352–353.
  • 22. Gupta, G.K., Verma, M.M., Sharma, S.K., et al. 2005. Effect of Nutrients, pH and Temperature on the Growth and Sclerotium Formation in Sclerotium rolfsii and Amendments on Collar Rot in Soybean [Glycine max (L) Merrill]. Soybean Research, 29.
  • 23. Heijnen, C.E., & van Veen, J.A. 1991. A determination of protective microhabitats for bacteria introduced into soil. FEMS Microbiology Letters, 85(1), 73–80. https://doi.org/10.1111/j.1574-6968.1991.tb04699.x
  • 24. Horner, H.T., Tiffany, L.H., Cody, A.M., Horner, H.T., Tiffany, L.H., Cody, A.M. 1985. Proceedings of the Iowa Academy of Science Calcium Oxalate Bipyramidal Crystals on the Basidiocarps of Geastrum minus ( Lycoperdales ) Calcium Oxalate Bipyramidal Crystals on the, 92, 70–77.
  • 25. Hoynes, C.D., Lewis, J.A., Lumsden, R.D., & Bean, G. A. 1999. Biological control agents in combination with fertilization or fumigation to reduce sclerotial viability of Sclerotium rolfsii and disease of snap beans in the greenhouse. Journal of Phytopathology, 147(3), 175–182. https://doi.org/10.1046/j.1439-0434.1999.147003175.x
  • 26. Huber, D.M., Jones, J.B. 2013. The role of magnesium in plant disease. Plant and Soil, 368(1–2), 73–85. https://doi.org/10.1007/s11104-012-1476-0
  • 27. ISO 10693. 1995. No Title. AFNOR, Ed.(Détermination de la teneur en carbonate-Méthode Volumétrique (Indice de classement X), 31–105.
  • 28. Jayakumar, A., Krishna, A., Mohan, M., Nair, I.C., Radhakrishnan, E.K. 2019. Plant Growth Enhancement, Disease Resistance, and Elemental Modulatory Effects of Plant Probiotic Endophytic Bacillus sp. Fcl1. Probiotics and Antimicrobial Proteins, 11(2), 526–534. https://doi.org/10.1007/s12602-018-9417-8
  • 29. Jean-François VIZIER. 1978. Etude de la dynamique du fer dans des sols évoluant sous l ’ effet d’ un excès d ’ eau Etude expérimentale sur des sols de rizières de Madagascar,16, 23–41.
  • 30. Kabana, R.R. 1980. A Method for Estimating Numbers of Viable Sclerotia of Sclerotium rolfsii in Soil. In Phytopathology, 70(9), 917. https://doi.org/10.1094/phyto-70-917
  • 31. Khattabi, N., Ezzahiri, B., Louali, L., Oihabi, A. 2004. Effect of nitrogen fertilizers and Trichoderma harzianum on Sclerotium rolfsii. Agronomie, 24(5), 281–288.
  • 32. Kokalisburelle, N., Rodriguezkabana, R. 1994. Effects of Pine Bark Extracts and Pine Bark Powder on Fungal Pathogens, Soil Enzyme Activity, and Microbial Populations1. In Biological Control, 4(3), 269–276. https://doi.org/10.1006/bcon.1994.1034
  • 33. Lazarovits, G. 2001. Invited paper / article sollicité Management of soil-borne plant pathogens with organic soil amendments : a disease control. Agriculture, 7, 1–7.
  • 34. Leoni, C., ter Braak, C.J.F., Gilsanz, J.C., Dogliotti, S., Rossing, W.A.H., van Bruggen, A.H. C. 2014. Sclerotium rolfsii dynamics in soil as affected by crop sequences. Applied Soil Ecology, 75, 95–105.
  • 35. Lindsay, W.L., Norvell, W. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428.
  • 36. Matti, D., Sen, C. 1985. Integrated biocontrol of Sclerotium rolfsii with nitrogenous fertilizers and Trichoderma harzianum. Indian Journal of Agricultural Sciences (India).
  • 37. Mendes, G. de O., Dyer, T., Csetenyi, L., Gadd, G.M. 2022. Rock phosphate solubilization by abiotic and fungal-produced oxalic acid: reaction parameters and bioleaching potential. Microbial Biotechnology, 15(4), 1189–1202. https://doi.org/10.1111/1751-7915.13792
  • 38. Metson, A.J. 1957. Methods of chemical analysis for soil survey samples. Soil Science, 83(3), 245.
  • 39. Moromizato, Z., Ishizaki, F., Takara, K., Tamori, M. 1991a. The Effects of Phosphorus and Magnesium on Sclerotium Formation in Rhizoctonia solani Kuehn. Japanese Journal of Phytopathology, 57(5), 649–656. https://doi.org/10.3186/jjphytopath.57.649
  • 40. Moromizato, Z., Ishizaki, F., Takara, K., Tamori, M. 1991b. The effects of phosphorus and magnesium on sclerotium formation in Rhizoctonia solani Kühn. Japanese Journal of Phytopathology, 57(5), 649–656.
  • 41. Morra, M.J., Kirkegaard, J.A. 2002. Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biology and Biochemistry, 34(11), 1683–1690. https://doi.org/10.1016/S0038-0717(02)00153-0
  • 42. Ni, L., Punja, Z.K. 2020. Effects of a foliar fertilizer containing boron on the development of Sclerotinia stem rot (Sclerotinia sclerotiorum) on canola (Brassica napus L.) leaves. Journal of Phytopathology, 168(1), 47–55. https://doi.org/10.1111/jph.12865
  • 43. Noble, R. 2011. Risks and benefits of soil amendment with composts in relation to plant pathogens. Australasian Plant Pathology, 40(2), 157–167. https://doi.org/10.1007/s13313-010-0025-7
  • 44. Olsen, S.R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate, 939. US Department of Agriculture.
  • 45. Osman Mohamed Ali, E., Shakil, N.A., Rana, V.S., Sarkar, D.J., Majumder, S., Kaushik, P., Singh, B.B., Kumar, J. 2017. Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Industrial Crops and Products, 108(May), 379–387. https://doi.org/10.1016/j.indcrop.2017.06.061
  • 46. Pane, C., Spaccini, R., Piccolo, A., Scala, F., Bonanomi, G. 2011. Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biological Control, 56(2), 115–124. https://doi.org/10.1016/j.biocontrol.2010.10.002
  • 47. Raghavendra, B., Srinivas, T., Padmodaya, B. 2018. Influence of Soil pH and Moisture on the Viability of Sclerotia of S. rolfsii. International Journal of Current Microbiology and Applied Sciences, 7(8), 92–100. https://doi.org/10.20546/ijcmas.2018.708.011
  • 48. Rasmussen, P.H., Knudsen, I.M.B., Elmholt, S., Jensen, D.F. 2002. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils. Applied Soil Ecology, 19(1), 91–96. https://doi.org/10.1016/S0929-1393(01)00177-9
  • 49. Regragui, A., Rahouti, M., Lahlou, H. 2003. Effect of saline stress on Verticillium albo-atrum: Pathogenicity and production of cellulolytic enzymes in vitro | Effet du stress salin sur Verticillium albo-atrum: Pathogénicité et production d’enzymes cellulolytiques in vitro. Cryptogamie, Mycologie, 24(2), 167–174.
  • 50. Rerhou, B., Mosseddaq, F., Moughli, L., Ezzahiri, B., Mokrini, F., Bel-lahbib, S., Namr, K.I. 2022. Effect of Crop Residues Management on Soil Fertility and Sugar Beet Productivity in Western Morocco, 23(5), 256–271.
  • 51. Sharma, R., Shukla, S. 2020. Effect of trace elements Zn, B, Mg and Cu on the growth and sporulation of Pyricularia oryzae, the causal organism of blast disease of rice. Current Botany, June, 121–124. https://doi.org/10.25081/cb.2020.v11.6161
  • 52. Sideri, M., Georgiou, C.D. 2000. Differentiation and hydrogen peroxide production in Sclerotium rolfsii are induced by the oxidizing growth factors, light and iron. Mycologia, 92(1–6), 1033–1042. https://doi.org/10.1080/00275514.2000.12061248
  • 53. Simard, R.R. 1993. Ammonium acetate-extractable elements. Soil Sampling and Methods of Analysis, 1, 39–42.
  • 54. Singh, R., Singh, L.S., Prasad, D., Kureel, R.S., Sengar, R., Singh, A. 2010. Relationship of susceptibility and growth stages of plant for development of epidemic of sheath blight in rice. Journal of Applied and Natural Science, 2(2), 230–233.
  • 55. Survase, S.A., Saudagar, P.S., Singhal, R.S. 2006. Production of scleroglucan from Sclerotium rolfsii MTCC 2156. Bioresource Technology, 97(8), 989–993. https://doi.org/10.1016/j.biortech.2005.04.037
  • 56. Tarafdar, A., Rani, T.S., Chandran, U.S.S., Ghosh, R., Chobe, D.R., Sharma, M. 2018. Exploring combined effect of abiotic (soil moisture) and biotic (Sclerotium rolfsii Sacc.) stress on collar rot development in chickpea. Frontiers in Plant Science, 9, 1154.
  • 57. Vega, R.K., Tourneau, D.L. 1974.The Effect of Zinc on Growth and Sclerotial Formation In Whetzelinia Sclerotiorum. Mycologia, 66(2), 256–264. https://doi.org/10.1080/00275514.1974.12019600
  • 58. Venkatesh, A. 2013. Occurrence, Virulence, Inoculum Density and Plant Age of Sclerotium rolfsii Sacc. Causing Collar Rot of Peppermint. Journal of Plant Pathology & Microbiology, 4(10). https://doi.org/10.4172/2157-7471.1000211
  • 59. Villeneuve, F., Leyronas, C., Nicot, P.C., Bardin, M., Faloya, V. 2019. Projet Sclerotinia sclerotiorum: meilleure connaissance du champignon pathogène, évaluation du risque et évaluation de méthodes de protection. Innovations Agronomiques, 71, 401–413.
  • 60. Walkley, A., Black, I.A. 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. In Soil Science, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003
  • 61. Wear, J.I.1965. Boron. In: Methods of Soil Analysis (C.A. Black et al., Eds.), Part II. American Society of Agronomy, Madison, Winconsin, USA.
  • 62. Wheeler, B.E.J., Sharan, N. 1965. The production of sclerotia by Sclerotium rolfsii. Transactions of the British Mycological Society, 48(2), 291-IN14. https://doi.org/10.1016/s0007-1536(65)80097-3
  • 63. Whitney, E.D., Duffus, J.E., et al. 1986. Compendium of beet diseases and insects. American Phytopathological Society.
  • 64. Wilkinson, H.T., Alldredge, J.R., Cook, R.J., et al. 1985. Estimated distances for infection of wheat roots by Gaeumannomyces graminis var. tritici in soils suppressive and conducive to take-all. Phytopathology, 75(5), 557–559.
  • 65. Zanin, L., Tomasi, N., Cesco, S., Varanini, Z., Pinton, R. 2019. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Frontiers in Plant Science, 10(May), 1–10. https://doi.org/10.3389/fpls.2019.00675
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f81ac07c-17f0-43ab-a100-275645d615a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.