PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Renewable energy sources in the EU – current state of usage and import dependency

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Odnawialne źródła energii w UE – obecny stan wykorzystania i zależność od importu
Języki publikacji
EN
Abstrakty
EN
European Union countries consumed in 2020 more energy than they produced themselves. Only its part was obtained from renewable sources (14.4%). Because of this, the Community focuses its activities largely on energy, where it is produced and the level of its consumption. To this purpose, through tools such as EU directives, it obliges Member States to reduce the energy they consume, as well as to increase the share of renewable sources in energy production. The paper analyses the energy and climate targets for the European Union, particularly those for renewables and energy efficiency, for the oncoming years. In addition, the consumption and production of energy from renewable sources of each country was summarized. Only Sweden and Latvia have been shown to consume more than 50% of their energy from renewable sources. On the other hand, about 58% of the EU’s consumed renewable energy in 2020 comes from biofuels and renewable waste. The countries’ dependence on energy imports is also apparent, but that from renewable sources usually does not account for a large share. It has also been shown that sixteen of the twenty-seven countries import more than 50% of their energy needs.
PL
Abstrakt Kraje Unii Europejskiej w 2020 r. zużyły więcej energii niż same wyprodukowały. Natomiast tylko jej część pochodziła ze źródeł odnawialnych (14.4%). W związku z tym Wspólnota swoje działania w dużej mierze koncentruje na energii, miejscach jej wytwarzania i ilości zużycia. W tym celu za pośrednictwem narzędzi, jakimi są m.in. dyrektywy UE zobowiązuje kraje do redukcji zużywanej energii, a także do wzrostu udziału źródeł odnawialnych w jej produkcji. W artykule przeanalizowano cele energetyczno-klimatyczne, w szczególności dotyczące OZE i efektywności energetycznej dla krajów Unii Europejskiej na najbliższe lata. Ponadto zestawiono zużycie oraz produkcję energii pochodzącej ze źródeł odnawialnych poszczególnych krajów. Wykazano, że jedynie Szwecja i Łotwa konsumują więcej niż 50% energii pochodzącej z OZE. Natomiast około 58% skonsumowanej w 2020 r. energii odnawialnej w EU pochodzi z biopaliw i odpadów odnawialnych. Widoczne jest także uzależnienie krajów wchodzących w skład UE od importu energii, lecz ta pochodząca ze źródeł odnawialnych zwykle nie stanowi dużego udziału w energii importowanej. Wykazano również, że 16 z 27 krajów EU importuje ponad 50% swojego zapotrzebowania na energię.
Rocznik
Tom
Strony
19--34
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
  • Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
  • student of Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
Bibliografia
  • 1. A Renovation Wave for Europe - greening our buildings, creating jobs, improving lives, (2020). Official Journal of the European Union Official Journal of the European Union.
  • 2. Achinas, S., Horjus, J., Achinas, V., Euverink, G.J.W., (2019). A PESTLE Analysis of Biofuels Energy Industry in Europe. Sustainability, no. 11, 5981. https://doi.org/10.3390/ SU11215981.
  • 3. Ali, S., Akter, S., Fogarassy, C., (2021). The Role of the Key Components of Renewable Energy (Combustible Renewables and Waste) in the Context of CO2 Emissions and Economic Growth of Selected Countries in Europe. Energies, no. 14, 2034. https://doi. org/10.3390/EN14082034.
  • 4. Aydin, E., Brounen, D., (2019). The impact of policy on residential energy consumption. Energy, no. 169, pp. 115–129. https://doi.org/10.1016/j.energy.2018.12.030.
  • 5. Baborska-Narożny, M., Stefanowicz, E., Piechurski, K., Fidorów-Kaprawy, N., Laska, M., Mokrzecka, M., Małyszko, M., Chmielewska, A., Smektała, M., Troszyński, M., Maury, L., (2020). Węglem i nie węglem. Ogrzewanie kamienic: perspektywa mieszkańców i scenariusze zmian. Rzeczywiste koszty, komfort termiczny i warunki korzystania z różnych systemów ogrzewania. Oficyna Wydawnicza Politechniki Wrocławskiej. https://doi.org/10.37190/DIVERCITY4_WNW.
  • 6. Bayar, Y., Gavriletea, M.D., Sauer, S., Paun, D., (2021). Impact of Municipal Waste Recycling and Renewable Energy Consumption on CO2 Emissions across the European Union (EU) Member Countries. Sustainability, no. 13, 656. https://doi.org/10.3390/ SU13020656.
  • 7. Bilan, Y., Streimikiene, D., Vasylieva, T., Lyulyov, O., Pimonenko, T., Pavlyk, A., (2019). Linking between Renewable Energy, CO2 Emissions, and Economic Growth: Challenges for Candidates and Potential Candidates for the EU Membership. Sustainability, no. 11, 1528. https://doi.org/10.3390/SU11061528.
  • 8. Bórawski, P., Bełdycka-Bórawska, A., Szymańska, E.J., Jankowski, K.J., Dubis, B., Dunn, J.W., (2019). Development of renewable energy sources market and biofuels in the European Union. J Clean Prod, no. 228, pp. 467–484. https://doi.org/10.1016/J. JCLEPRO.2019.04.242. 9. Brodny, J., Tutak, M., (2022). Analysis of the efficiency and structure of energy consumption in the industrial sector in the European Union countries between 1995 and 2019. Science of the Total Environment, no. 808. https://doi.org/10.1016/j.scitotenv.2021.152052.
  • 10. Cansino, J.M., Pablo-Romero, M. del P., Román, R., Yñiguez, R., (2011). Promoting renewable energy sources for heating and cooling in EU-27 countries. Energy Policy, no. 39, pp. 3803–3812. https://doi.org/10.1016/J.ENPOL.2011.04.010.
  • 11. Capros, P., Mantzos, L., Parousos, L., Tasios, N., Klaassen, G., Van Ierland, T., (2011). Analysis of the EU policy package on climate change and renewables. Energy Policy, no. 39, pp. 1476–1485. https://doi.org/10.1016/J.ENPOL.2010.12.020. 12. Database – Eurostat, https://ec.europa.eu/eurostat/data/database (accessed 5.22.23).
  • 13. DIRECTIVE 2009/29/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, (2009). Official Journal of the European Union.
  • 14. DIRECTIVE 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, (2018). Official Journal of the European Union.
  • 15. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Eickemeier, P., Matschoss, P., Gerrit, H., Kadner, S., Schlömer, S., Zwickel, T., Von Stechow, C., (2011). Special Report on Renewable Energy Sources and Climate Change Mitigation.
  • 16. EU energy in figures, (2022). Publications Office of the European Union. https://doi. org/10.2833/897513.
  • 17. EU Reference Scenario 2020. Energy, transport and GHG emissions - Trends to 2050, (2021). European Commission.
  • 18. Fit for 55 - The EU’s plan for a green transition. https://www.consilium.europa.eu/en/ policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/ (accessed 5.10.23).
  • 19. Halkos, G., Petrou, K.N., 2019. Analysing the Energy Efficiency of EU Member States: The Potential of Energy Recovery from Waste in the Circular Economy. Energies, no. 12, 3718. https://doi.org/10.3390/EN12193718.
  • 20. IRENA, Renewable Power Generation Costs in 2021 (2022), International Renewable Energy Agency.
  • 21. Kabir, E., Kumar, P., Kumar, S., Adelodun, A.A., Kim, K.-H., (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, no.82, pp. 894–900. https://doi.org/10.1016/j.rser.2017.09.094.
  • 22. Korczak, K., Kochański, M., Skoczkowski, T., (2022). Mitigation options for decarbonization of the non-metallic minerals industry and their impacts on costs, energy consumption and GHG emissions in the EU - Systematic literature review. J Clean Prod, no. 358. https://doi.org/10.1016/j.jclepro.2022.132006.
  • 23. Li, T., Baležentis, T., Makutėnienė, D., Streimikiene, D., Kriščiukaitienė, I., (2016). Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction. Appl Energy, no. 180, pp. 682–694. https://doi.org/10.1016/j. apenergy.2016.08.031.
  • 24. Lopes, M.A.R., Antunes, C.H., Martins, N., (2015). Towards more effective behavioural energy policy: An integrative modelling approach to residential energy consumption in Europe. Energy Res Soc Sci, no. 7, pp. 84–98. https://doi.org/10.1016/j. erss.2015.03.004.
  • 25. Malinauskaite, J., Jouhara, H., Czajczyńska, D., Stanchev, P., Katsou, E., Rostkowski, P., Thorne, R.J., Colón, J., Ponsá, S., Al-Mansour, F., Anguilano, L., Krzyżyńska, R., López, I.C., A.Vlasopoulos, Spencer, N., (2017). Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy, no. 141, pp. 2013–2044. https://doi.org/10.1016/J.ENERGY.2017.11.128.
  • 26. Paris, B., Vandorou, F., Balafoutis, A.T., Vaiopoulos, K., Kyriakarakos, G., Manolakos, D., Papadakis, G., (2022). Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption. Renewable and Sustainable Energy Reviews, no. 158, 112098. https://doi. org/10.1016/j.rser.2022.112098.
  • 27. Potrč, S., Čuček, L., Martin, M., Kravanja, Z., (2021). Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050. Renewable and Sustainable Energy Reviews, no. 146. https://doi.org/10.1016/j.rser.2021.111186.
  • 28. REPORT FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT AND THE COUNCIL on the Functioning of the European carbon market in 2021 pursuant to Articles 10(5) and 21(2) of Directive 2003/87/EC (as amended by Directive 2009/29/ EC and Directive (EU) 2018/410), (2022). European Commission.
  • 29. Rokicki, T., Perkowska, A., Klepacki, B., Bórawski, P., Bełdycka-Bórawska, A., Michalski, K., (2021). Changes in Energy Consumption in Agriculture in the EU Countries. Energies, no. 14, pp. 1–12.
  • 30. Ruokonen, J., Aronsen, G., Turkama, A.-M., Gautesen, K., (2008). Promotion of renewable energy in the Nordic countries: Opportunities for harmonization of instruments. Nordic Council of Ministers, Nordic Council of Ministers Secretariat.
  • 31. Scarlat, N., Fahl, F., Dallemand, J.F., (2019). Status and Opportunities for Energy Recovery from Municipal Solid Waste in Europe. Waste Biomass Valorization, no. 10, pp. 2425–2444. https://doi.org/10.1007/S12649-018-0297-7/TABLES/5.
  • 32. Simionescu, M., Albu, L.L., Raileanu Szeles, M., Bilan, Y., (2017). The impact of biofuels utilisation in transport on the sustainable development in the European Union. Technological and Economic Development of Economy, no. 23, pp. 667–686. https://doi. org/10.3846/20294913.2017.1323318.
  • 33. Streimikiene, D., Kasperowicz, R., (2016). Review of economic growth and energy consumption: A panel cointegration analysis for EU countries. Renewable and Sustainable Energy Reviews, no. 59, 1545–1549. https://doi.org/10.1016/j.rser.2016.01.041.
  • 34. The European energy security strategy, (2014), pp. 202–219. https://doi.org/10.4324/ 9781315455297-11.
  • 35. The European Green Deal, (2019). European Commission.
  • 36. Tolón-Becerra, A., Lastra-Bravo, X., Bienvenido-Bárcena, F., (2011). Proposal for territorial distribution of the EU 2020 political renewable energy goal. Renew Energy, no. 36, pp. 2067–2077. https://doi.org/10.1016/j.renene.2011.01.033.
  • 37. Tutak, M., Brodny, J., (2022). Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment and conventional energy sources. A 20-year perspective. J Clean Prod, no. 345. https://doi.org/10.1016/ j.jclepro.2022.131076.
  • 38. Tzeiranaki, S.T., Bertoldi, P., Diluiso, F., Castellazzi, L., Economidou, M., Labanca, N., Serrenho, T.R., Zangheri, P., (2019). Analysis of the EU residential energy consumption: Trends and determinants. Energies, no. 12. https://doi.org/10.3390/en12061065.
  • 39. Yamaka, W., Chimprang, N., Klinlumpu, C., (2022). The dynamic linkages among environment, sustainable growth, and energy from waste in the circular economy of EU countries. Energy Reports, no. 8, pp. 192–198. https://doi.org/10.1016/J.EGYR. 2022.02.122.
  • 40. Zheng, X., (2010). Critical branching random walks with small drift. Stoch Process Their Appl, no. 120, pp. 1821–1836. https://doi.org/10.1016/J.SPA.2010.05.005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f81a5a29-bda8-406f-b1bd-ec40bc2a0d7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.