PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploring the dynamics of monkeypox: a fractional order epidemic model approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a mathematical model employing nonlinear fractional differential equations to investigate the transmission of disease from rodents to humans. The existence and uniqueness of the model’s solutions are established through Banach contraction maps, and the local asymptotic stability of equilibrium solutions is confirmed. We calculate a critical parameter, the basic reproduction number, which reflects secondary infection rates. Numerical simulations illustrate dynamic changes over time, showcasing that our model provides a more comprehensive representation of the biological system compared to classical models.
Rocznik
Strony
32--44
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Department of Mathematics, Bayero University, Kano, Nigeria
  • Department of Mathematics, Near East University, 99138 Mersin, Turkey
autor
  • Department of Mathematics, Near East University, 99138 Mersin, Turkey
  • Department of Mathematical Sciences, College of Science, UAE University, Al Ain 15551, UAE
  • Department of Mathematics, Faculty of Science, Helwan University, Cairo 11795, Egypt
Bibliografia
  • [1] Singh, N.P., Sharma, S., Ghai, G., & Singh, A. (2021). A systematic review on epidermology of human Monkeypox virus. Annals of the Romanian Society for Cell Biology, 25(7), 602-610.
  • [2] Sklenovská, N., & Van Ranst, M. (2018). Emergence of Monkeypox as the most important orthopoxvirus infection in humans. Frontiers in Public Health, 6, 241.
  • [3] Oladoye, M.J. (2021). Monkeypox: a neglected viral zoonotic disease. Electronic Journal of Medical and Educational Technologies, 14(2), em2108.
  • [4] Shanta, I.S., Luby, S.P., Hossain, K., Heffelfinger, J.D., Kilpatrick, A.M., Haider, N., ... & Gurley, E.S. (2023). Human exposure to bats, rodents and monkeys in Bangladesh. EcoHealth, 20(1), 53-64.
  • [5] Deresinski, S. (2022). A case of Monkeypox in a returned traveler. Infectious Disease Alert, 41(8).
  • [6] Jiang, R.M., Zheng, Y.J., Zhou, L., Feng, L.Z., Ma, L., Xu, B.P., ... & Shen, K.L. (2023). Diagnosis, treatment, and prevention of Monkeypox in children: an experts’ consensus statement. World Journal of Pediatrics, 19(3), 231-242.
  • [7] Costello, V., Sowash, M., Gaur, A., Cardis, M., Pasieka, H., Wortmann, G., & Ramdeen, S. (2022). Imported Monkeypox from international traveler, Maryland, USA, 2021. Emerging Infectious Diseases, 28(5), 1002.
  • [8] Peter, O.J., Kumar, S., Kumari, N., Oguntolu, F.A., Oshinubi, K., & Musa, R. (2022). Transmission dynamics of Monkeypox virus: a mathematical modelling approach. Modeling Earth Systems and Environment, 1-12.
  • [9] Peter, O.J., Qureshi, S., Ojo, M.M., Viriyapong, R., & Soomro, A. (2023). Mathematical dynamics of measles transmission with real data from Pakistan. Modeling Earth Systems and Environment, 9(2), 1545-1558.
  • [10] Baba, I.A., Nasidi, B.A., & Baleanu, D. (2021). Optimal control model for the transmission of novel COVID-19.
  • [11] Baba, I.A., Yusuf, A., Nisar, K.S., Abdel-Aty, A.H., & Nofal, T.A. (2021). Mathematical model to assess the imposition of lockdown during COVID-19 pandemic. Results in Physics, 20, 103716.
  • [12] Djennadi, S., Shawagfeh, N., Osman, M.S., Gómez-Aguilar, J.F., & Arqub, O.A. (2021). The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Physica Scripta, 96(9), 094006.
  • [13] Ali, K.K., Abd El Salam, M.A., Mohamed, E.M., Samet, B., Kumar, S., & Osman, M.S. (2020). Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series. Advances in Difference Equations, 2020(1), 1-23.
  • [14] Rashid, S., Kubra, K.T., Sultana, S., Agarwal, P., & Osman, M.S. (2022). An approximate analytical view of physical and biological models in the setting of Caputo operator via Elzaki transform decomposition method. Journal of Computational and Applied Mathematics, 413, 114378.
  • [15] Yusuf, A., Qureshi, S., Mustapha, U.T., Musa, S.S., & Sulaiman, T.A. (2022). Fractional modeling for improving scholastic performance of students with optimal control. International Journal of Applied and Computational Mathematics, 8(1), 37.
  • [16] Peter, O.J., Yusuf, A., Oshinubi, K., Oguntolu, F.A., Lawal, J.O., Abioye, A.I., & Ayoola, T.A. (2021). Fractional order of pneumococcal pneumonia infection model with Caputo Fabrizio operator. Results in Physics, 29, 104581.
  • [17] Qureshi, S., & Jan, R. (2021). Modeling of measles epidemic with optimized fractional order under Caputo differential operator. Chaos, Solitons & Fractals, 145, 110766.
  • [18] Peter, O.J. (2020). Transmission dynamics of fractional order Brucellosis model using Caputo-Fabrizio operator. International Journal of Differential Equations, 2020, 1-11.
  • [19] Du, M., Wang, Z., & Hu, H. (2013). Measuring memory with the order of fractional derivative. Scientific Reports, 3(1), 3431.
  • [20] El-Mesady, A., Elsonbaty, A., & Adel, W. (2022). On nonlinear dynamics of a fractional order Monkeypox virus model. Chaos, Solitons & Fractals, 164, 112716.
  • [21] Majee, S., Jana, S., Barman, S., & Kar, T.K. (2023). Transmission dynamics of monkeypox virus with treatment and vaccination controls: A fractional order mathematical approach. Physica Scripta, 98(2), 024002.
  • [22] Diethelm, K., Ford, N.J., & Freed, A.D. (2004). Detailed error analysis for a fractional Adams method. Numerical Algorithms, 36, 31-52.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f818fa4b-a41c-42da-abc4-1b9aa15a4169
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.