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Abstract. We present a mathematical model employing nonlinear fractional differential 

equations to investigate the transmission of disease from rodents to humans. The existence 

and uniqueness of the model’s solutions are established through Banach contraction maps, 

and the local asymptotic stability of equilibrium solutions is confirmed. We calculate  

a critical parameter, the basic reproduction number, which reflects secondary infection rates. 

Numerical simulations illustrate dynamic changes over time, showcasing that our model  

provides a more comprehensive representation of the biological system compared to classical 

models.  
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1. Introduction  

Orthopoxviruses, primarily originating from wild rodents in Central and West 

Africa, are the main causative agents of Monkeypox, a zoonotic disease [1, 2].  

It can spread through various mean, such as direct contact, sneezing, and saliva.  

The majority of infections result from contact with monkeys or rodents [3, 4]. Symp-

toms encompass fever, headache, body aches, followed by a blistering rash, swollen 

lymph nodes, and scarring [5, 6]. Severe cases are more prevalent in children  

and immunocompromised individuals, with complications affecting various organ 

systems [7]. In 2003, a Monkeypox epidemic was identified in the United States [8]. 

As of May 2022, the World Health Organization has reported 80 confirmed mild 

cases in 10 countries [8]. Mathematical models play a pivotal role in studying the 

dynamics of infectious diseases and offering guidance for epidemic control strate-

gies. The limited focus on Monkeypox has impeded comprehensive understanding, 

although some researchers have developed deterministic models, providing insights 
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and proposing measures like quarantine [9–11]. Researchers in science and engineer-

ing are exploring fractional differential equations due to their memory effects,  

enhancing modeling techniques [12–15]. Fractional models applied to COVID-19 

have demonstrated success [16–19], yet few studies have delved into Monkeypox 

transmission using fractional calculus [20, 21]. 

The objective of this paper was to analyse the transmission dynamics and control 

of Monkeypox in populations using a fractional-order model. The goal was to visu-

alize how memory indices or fractional-order parameters influence the dynamics of 

Monkeypox disease and its impact on the dynamics of smallpox disease. Among the 

many models of Monkeypox in the literature, few have been constructed to explain 

the origin of the disease and its transmission in hospitals and care centers. In this 

paper, the origin of the virus is considered to be rodents, and it is incorporated into 

the model, taking various stages of infection into account. 

The paper is organized as follows: Section 1 introduces the topic, Section 2 pre-

sents the model formulation, Section 3 discusses the existence and uniqueness of 

model solutions, and Section 4 covers the derivation of the basic reproduction number 

and the local stability analysis of the solution. Finally, Section 5 supports the analyt-

ical results with numerical simulations, presenting our discussion and conclusions. 

2. Model formulation 

With rodents as the origin of the monkeypox, it is assumed that the newborn  

rodents are born into susceptible class ��, at the rate ��. Which joined the infectious 

class at rate ��. It is also assumed that the newborn of humans are born into suscep-

tible class �� which later became infectious �� as a result of contact with an infected 

rodent at the rate �	. Then the virus spreads from an infected human to human 
�, 

to a family member ��, then to clinic center 
� and care center �� at the rates ��, ��, �� and �� respectively, ��, � = 1, 2, … , 8, natural death rates in ��, ��, ��, ��,  �, !", #$ and %$, compartments respectively, &�, � = 1,2,3, … ,5, disease induced  

death in ��, ��, ��,  �, !", #$ and %$ compartments respectively. Figure 1 gives 

the schematic diagram of the dynamics of the disease.  
 

 

Fig. 1. Schematic diagram showing the dynamics of Monkeypox in a population 
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The transmission dynamics can be described by the nonlinear system of fractional 

order differential equations (FODE) in the sense of Caputo. 

 )*+,- ��./0 = ��+ − 2�+�� − ��+����, (1) 

 )*+,- ��./0 = ��+���� − .2	+ + 4�+0�� − �	+����, (2) 

 )*+,- ��./0 = ��+ − 2�+�� − �	+����, (3) 

 )*+,- ��./0 = �	+���� − .2�+ + 4	+0�� − ��+��
�, (4) 

 )*+,- 
�./0 = ��+��
� − .2�+ + 4�+0
� − ��+
���, (5) 

 )*+,- ��./0 = ��+
��� − .2�+ + 4�+0�� − ��+
���, (6) 

 )*+,- 
�./0 = ��+
��� − .25+ + 4�+0
� − ��+
���, (7) 

 )*+,- ��./0 = ��+
��� − .26+ + 4�+0��, (8) 

where, 

��.00 > 0,   ��.00 ≥ 0,   ��.00 > 0,   ��.00 ≥ 0,   
�.00 ≥ 0,   ��.00 ≥ 0,  
�.00 ≥ 0,   ��.00 ≥ 0. 
3. Existence and uniqueness of the solutions 

In this Section, we study the existence and uniqueness of solution of the model. 

Consider the following theorem, 
 

Theorem 1. The kernels of equations (1)–(8) satisfy Lipschitz continuity for  <= ≥ 0, � = 1,2, … , 8. 

PROOF: Let the kernels be 

>�./, ��0 = ��+ − 2�+�� − ��+����,   >	./, ��0 = ��+���� − .2	+ + 4�+0�� − �	+����, >�./, ��0 = ��+ − 2�+�� − �	+����,   >�./, ��0 = �	+���� − .2�+ + 4	+0�� − ��+��
�,  >�./, 
�0 = ��+��
� − .2�+ + 4�+0
� − ��+
���, 
  >�./, ��0 = ��+
��� − .2�+ + 4�+0�� − ��+
���, >5./, 
�0 = ��+
��� − .25+ + 4�+0
� − ��+
���,  >6./, ��0 = ��+
��� − .26+ + 4�+0��. 

Taking >�./, ��0 and simplifying, we obtain 

 ‖>�./, ��0 − >�./, ��∗0‖ ≤ <�‖�� − ��∗‖. (9) 



 Exploring the dynamics of Monkeypox: A fractional order epidemic model approach 35 

In a similar way, we obtain 

‖>	./, ��0 − >	./, ��∗0‖ ≤ <	‖�� − ��∗‖, ‖>�./, ��0 − >�./, ��∗0‖ ≤ <�‖�� − ��∗‖,  ‖>�./, ��0 − >�./, ��∗0‖ ≤ <�‖�� − ��∗‖, ‖>�./, 
�0 − >�./, 
�∗0‖ ≤ <�‖
� − 
�∗‖,  ‖>�./, ��0 − >�./, ��∗ 0‖ ≤ <�‖�� − ��∗ ‖, ‖>5./, 
�0 − >5./, 
�∗0‖ ≤ <5‖
� − 
�∗‖,  ‖>6./, ��0 − >6./, ��∗0‖ ≤ <6‖�� − ��∗‖. 
To transform system (1) through (8) to equivalent Volterra-integral equations,  

we give the following Lemma: 

Lemma 1: The continuous system (1) through (8) can be transformed to equiva-

lent Volterra-integral equations. 

Proof: Consider  the integral of �� that is, 

��./0 =  ��.00 + 1Γ.α0 D ./ − E0+F�>�.E, ��.E00G/.*
,  (10)

Similarly, 

��./0 = ��.00 + 1Γ.α0 D ./ − E0+F�>	HE, ��.E0IG/,*
,  

��./0 = ��.00 + 1Γ.α0 D ./ − E0+F�>�HE, ��.E0IG/,*
,  

��./0 = ��.00 + 1Γ.α0 D ./ − E0+F�>�HE, ��.E0IG/,*
,  


�./0 = 
�.00 + 1Γ.α0 D ./ − E0+F�>�HE, 
�.E0IG/,*
,  

��./0 = ��.00 + 1Γ.α0 D ./ − E0+F�>�HE, ��.E0IG/,*
,  


�./0 =  
�.00 + 1Γ.α0 D ./ − E0+F�>5.E, 
�.E00G/,*
,  

��./0 =  ��.00 + 1Γ.α0 D ./ − E0+F�>6.E, ��.E00G/.*
,   

Theorem 2. Let 0 < K < 1, � = L0, ℎ∗N ⊆ ℝ and Q = |��./0 − ��.00| ≤ S�, let >�: � × Q →  ℝ  be continuous bounded function, that is ∃! Y > 0 such that |>=./, ��0| ≤ Y�. Assume that >�satisfy Lipschitz condition, if <�S� < Y�, then  

there exist unique �� ∈ �L0, ℎ∗N, ℎ∗ = min Lℎ, ^_`a.bc�0d` 0 èf. 
PROOF: Let g = h�� ∈ �L0, ℎ∗N:  ‖��./0 − ��.00‖ ≤ S�i, since g ⊆ ℝ and its closed 

set, then g is a complete metric space. From (10), define operator � in g, such that 



36 I.A. Baba, E. Hincal, F.A. Rihan 

���./0 =  ��.00 + 1Γ.α0 D ./ − E0+F�>�.E, ��.E00G/*
, . (11)

Then, 

 |���./0 − ��.00| ≤ S�. (12) 

Similarly, 

|���./0 − ��.00| ≤ S	,   |���./0 − ��.00| ≤ S�,   |���./0 − ��.00| ≤ S�,   |�
�./0 − 
�.00| ≤ S�,  |���./0 − ��.00| ≤ S�, |�
�./0 − 
�.00| ≤ S5, |���./0 − ��.00| ≤ S6. 
Therefore � maps g onto itself. Secondly, to show that g is contractive, we have 

��� − ���∗ = ��.00 − ��∗.00 + 1Γ.α0 D ./ − E0+F�j>�HE, ��.E0I − >�HE, ��∗.E0IkGE*
, . 

Since ��.00 = ��∗.00, then 

|��� − ���∗| = l 1Γ.α0 D ./ − E0+F�j>�HE, ��.E0I − >�HE, ��∗.E0IkGE*
, l 

 ≤ 1Γ.α0 D ./ − E0+F�<�‖�� − ��∗‖GE*
,  

 = <�Γ.α + 10 ‖�� − ��∗‖/b ≤ <�Γ.α + 10 ‖�� − ��∗‖ S�Γ.α + 10Y� . 
Hence, we get 

‖��� − ���∗‖ ≤ <�S�Y� ‖�� − ��∗‖. (13)

Since by hypothesis  
m`_`d` < 1, then g is contractive and has a unique fixed  

point. In a similar way, we obtain 

‖��� − ���∗‖ ≤ <	S	Y	 ‖�� − ��∗‖,   ‖��� − ���∗‖ ≤ <�S�Y� ‖�� − ��∗‖, 
 ‖��� − ���∗‖ ≤ <�S�Y� ‖�� − ��∗‖,   ‖�
� − �
�∗‖ ≤ <�S�Y� ‖
� − 
�∗‖, 
 ‖��� − ���∗ ‖ ≤ <�S�Y� ‖�� − ��∗ ‖,   ‖�
� − �
�∗‖ ≤ <5S5Y5 ‖
� − 
�∗‖, 
 ‖��� − ���∗‖ ≤ <6S6Y6 ‖�� − ��∗‖. 
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4. Basic reproduction ratio and stability analysis 

In this chapter, we find the equilibrium solutions, the basic reproduction ratio  

and carry out local stability analysis of the solutions.  

4.1. Equilibriums solutions 

Equating system (1) through (8) to zero and solving simultaneously, we find  

two equilibrium solutions; disease – free (n,) and endemic (n�).  

Disease free equilibrium n, is obtained by equating ��, ��, 
�, ��, 
� and ��  

to zero. Hence we get, 

n, = o��+2�+ , 0, ��+2�+  , 0, 0, 0, 0, 0p. 
The endemic equilibrium is obtained by taking all the variables to be different 

from zero. We get 


�∗ = .26+ + 4�+0��+ ,   
�∗ = 1��+ q2�+ + 4�+ + ��+.26+ + 4�+0��+ r,   � �∗ = ��+2�+ + ��+��∗ , 
� �∗ = ��+2�+ + �	+��∗, 

��∗ = 12 q��+ − ��+2	+ + 4�+ + 2�+��+ + 2�+�	+ 

 

±to��+ − ��+2	+ + 4�+ + 2�+��+ + 2�+�	+p	 + 4��+2�+�	+.2	+ + 4�+0 o1 − 2�+.2	+ + 4�+0 + �	+��+��+��+ pv, 
��∗ = �	+��+��+��+��∗L��+��+.2�+ + 4	+0 + ��+��+.2�+ + 4�+0 + ��+��+.26+ + 4�+0N.2�+ + �	+��∗0, 
��∗ = �	+��+��+��+��∗L��+��+.2�+ + 4	+0 + ��+��+.2�+ + 4�+0 + ��+��+.26+ + 4�+0N.2�+ + �	+��∗0 

 − 1��+ .2�+ + 4�+0,  
and, 

��∗ = �	+��+��+��+�w∗L��+��+.2�+ + 4	+0 + ��+��+.2�+ + 4�+0 + ��+��+.26+ + 4�+0N.2�+ + �	+�w∗0 

 − ��+��+��+ .2�+ + 4�+0 − 1��+ .25+ + 4�+0.  
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4.2. Basic reproduction number 

We will compute the basic reproduction number (x,) using the next generation 

matrix method. Using next generation matrix, the basic reproduction number is  

the spectral radius of the next generation matrix �yF�.n,0 [22]. That is 

x, = zH�yF�.n,0I. 
Now, let � be the transmission matrix and y the transition matrix obtained from 

(1)–(8). Also, let �.n,0 and y.n,0 be the Jacobian matrix obtained at disease – free 

equilibrium (n,) with respect to � and y respectively. Then the basic reproduction 

ratio, x, is obtained to be, 

x, = zH�yF�.n,0I = ��+��+2�+.2	+ + 4�+0 + �	+��+ . 
4.3. Local stability analysis of the equilibria 

From equations (1) through (8), Jacobian matrix is constructed 

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡ ~ ��+�� 0 0 0 0 0 0��+�� � −�	+�� 0 0 0 0 00 −�	+�� Q 0 0 0 0 00 �	+�� �	+�� � −��+�� 0 0 00 0 0 ��+
� ) −��+
� 0 00 0 0 0 ��+�� n −��+�� 00 0 0 0 0 ��+
� � −��+��0 0 0 0 0 0 0 � ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎤
, 

where 

 ~ = −2�+ − ��+��,   � = ��+�� − .2	+ + 4�+0 − �	+��,   � = −.2�+ + 4	+0 − ��+
�, 
 ) = ��+�� − .2�+ + 4�+0 − ��+��,   n = ��+
� − .2�+ + 4�+0 − ��+
� , 
 � = ��+�� − .25+ + 4�+0 − ��+�� ,   Q = ��+
� − .26+ + 4�+0,   � = 2�+ − �	+��. 
Theorem 3. The disease free equilibrium n, is locally asymptotically stable if x, < 1. 
PROOF: Consider the Jacobian matrix at disease free equilibrium .n,0, then the  

eigenvalues are: 

�� = −2�+ ,   �	 = ��+ �w+2�+ − .2	+ + 4�+0 − �	+ ��+2�+ ,   �� = −2�+ ,   �� = −.2�+ + 4	+0, 
 �� = −.2�+ + 4�+0, �� = −.2�+ + 4�+0, �5 = −.25+ + 4�+0, and �6 = −.26+ + 4�+0. 

All the eigenvalues are negative if �	 = ��+ �����̀ − .2	+ + 4�+0 − �	+ �����̀ < 0. 
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This is equivalent to 

������
���(��� + 
��) + ������

< 1. 

Hence, �� is locally asymptotically stable if �� < 1. 
 

Theorem 4. The endemic equilibrium (� �∗ ,  ��∗,  ��∗,  ��∗ ,  ��∗ ,  ��∗ ,  ��∗,  ��∗) is stable if 

�� > 1. 
PROOF: Consider the Jacobian matrix at endemic equilibrium (��), our eigenvalues 

are; 

�� = !,   �� = − 1
2 $%4�����∗�����∗ + '� − 2'( + (� + (' + ()),  

�* = 1
2 $−%4�����∗�����∗ + '� − 2'( + (� + (' + ()),  

�+ = − 1
2 $%�� − 2�, − 4�*���∗�*���∗ + (�+���∗)� + (� + �+���∗)), 

�- = 1
2 $−%�� − 2�, − 4�*���∗�*���∗ + (�+���∗)� + (� + �+���∗)), 

�. = �, �. = /,  and  �0 = �. 
Clearly, all the eigenvalues are negative if �� > 1. 

5. Numerical simulations 

In this section, the performance of the proposed model is tested by using Caputo 

differential operator using a fractional predictor-corrector method called, Adams- 

-Bashforth-Moulton technique. Python is employed for conducting simulations in 

this paper. Convergence analysis of the method, as well as its error analysis can be 

found in [22]. Improving the efficiency or accuracy of the scheme, or exploring  

extensions to other related models would be very important for research in this  

direction, see for example [9, 17]. 

Numerical simulations using the following parameter values are carried out:  
�� = 1.23, �� = 0.1, �* = 0.006, �+ = 1.009, �- = 0.004, �. = 0.09, �� = 1.5, 
�� = 1.25, µ� = 1.7, µ� = 0.134, µ* = 0.5, µ+ = 0.1343, µ- = 0.0025,  
µ. = 0.0074, µ8 = 0.344, µ0 = 0.5410, 
� = 0.0143, 
� = 0.3002, 
* = 0.0054, 

+ = 0.0019, 
- = 0.064, 
. = 0.4400. 

From the graphs, we can see the richness in dynamics of biological systems  

when modeled with FODEs over the models with traditional integer – order.  
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The behaviour of susceptible rodents and humans can be seen in the Figure 2a, b 

where the required simulations have been carried out for T = 10 days while varying 

the values of the fractional order parameter K. It is observed that the population  

decay abruptly for higher values of the fractional-order parameter.  

 
a) 

 

b) 

 

Fig. 2. Dynamics of susceptible rodents and humans respectively for varying 

fractional order K 

In Figure 3a, both populations decline, with rodents declining more rapidly than 

humans due to the complexity of human behavior. Humans can receive treatment 

and employ survival strategies. In Figure 3b, both populations also decline, but  

susceptible rodents decline faster than susceptible humans because rodents lack  

preventive measures and infect each other rapidly, leading to widespread infection 

once they are exposed. 

Figure 4 gives the dynamics of infected human, population of human that got 

infected through human, population of people that got infected through their family 

members, population of people that got infected from clinics, and population of  

people that got infected from care centers. Comparing the total infection �� in the 
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population with that gotten directly from human infections, suggested that, larger 

portion of the infection is from the rodents. 
 

a) 

 
b) 

 
Fig. 3. Comparison of the dynamics of infected and susceptible rodents  

with infected and susceptible humans 

 
Fig. 4. Dynamics of all the infected classes in the human population 
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a) 

 

b) 

 

Fig. 5. Comparison of the dynamics of susceptible humans with infected humans 

In Figure 5a, a comparison of susceptible and infected human dynamics reveals 

that both populations peak and decline almost simultaneously, influenced by factors 

such as natural death, disease-related mortality, and recovery. In Figure 5b, a similar 

comparison between susceptible and infected rodents shows that both populations 

also reach their peaks and decline nearly simultaneously, driven by factors such as 

natural death, disease-induced mortality, and natural recovery. 

6. Conclusions 

In conclusion, the utilization of fractional-order differential equations was observed 

to mitigate errors stemming from neglected parameters when modeling biological 

systems with memory and distributed system parameters. This paper introduced  

a Caputo-based fractional-order differential model for studying Monkeypox.  

The existence and uniqueness of the solution were established using the Banach con-

traction mapping principle. Local asymptotic stability was confirmed for equilibrium 
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solutions (disease-free and endemic), and the essential parameter, the basic reproduc- 

tion number, was derived. Numerical simulations illustrated the dynamic changes 

over time in response to parameter variations. The numerical scheme used can be 

applied to other types of fractional derivatives. 

The graphs also revealed that a significant portion of infections in the population 

originates from rodents rather than direct human-to-human transmission. Therefore, 

utmost caution must be exercised to prevent human contact with infected rodents. 

Future research could explore the integration of real-world data and environment- 

tal factors into the fractional differential model to improve the accuracy of disease  

transmission predictions. 
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