PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the Markov Chain Theory in Estimating the Strength of Fiber-Layered Composite Structures with Regard to Manufacturing Aspects

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The following work describes the application of a mathematical model based on Markov chain theory (MM) to estimate the fiber composite strength parameters, taking into account the laminate forming aspects using the vacuum bag method. This provides, from a unified position, a tool for a coordinated description of static strength and fatigue life. It was shown that the MM model gives relatively good results.
Twórcy
  • Kielce University of Technology in Kielce, Faculty of Mechatronics and Machine Building, AL.1000-lecia P.P. 7, 25-314, Kielce, Poland
Bibliografia
  • 1. ASTM D638 – Standard Test Method for Tensile Properties of Plastics.
  • 2. Behm G.W, Huber W.B, Noll A.J, Pelaez R. A Method and system for safe emergency vehicle operation using route calculation. United States Patent US8842021B2. 2014.
  • 3. Blassiau, S., Thionnet, A., Bunsell, A.R. Micromechanics of Load Transfer in a Unidirectional Carbon Fiber-Reinforced Epoxy Composite Due to Fiber Failures – Part I: Micromechanisms and 3D Analysis of Load Transfer: The Elastic Case. Composite Structures. 74(3), 2006, 303–318. https:// doi.org/10.1016/j.compstruct.2005.04.013
  • 4. Chatys R. Mechanical Properties of Polymer Composites Produced by Resin Injection Molding for Applications Under Increased Demands for Quality and Repeatability. Ultrasound, 64(2), 2009, 35–38.
  • 5. Chatys R, Paramonova A.Yu., Kleinhof M.A. Analysis of Residual Strength afterFatigue in Fibrous Composite using Markov Chains Mode, Monography: “Selected Problems of Modeling and Control in Mechanics”, Edited by St. Adamczak and L. Radziszewski, Kielce, 2011, 166–178.
  • 6. Chatys R. Investigation of the Effect of Distribution of the Static Strength on the Fatigue Failure of a Layered Composite by Using the Markov Chains Theory. Mechanics of Composite Materials, 48(6), 2012, 911–922.
  • 7. Chatys R. Statistical verification of strength parameters of fibrous composite materials. Composites theory and practice, 12(3), 2012, 171–176.
  • 8. Chatys R., Szafran K. Influence of technological aspects of the production of fibrous composite materials during the injection of resin under pressure into the interior of the mold, Transactions of the Institute of Aviation, 3(244), 2016, 41–53.
  • 9. Choi, M. A., Lee, M. H., Chang, J., and Lee, S. J. Permeability modeling of fibrous media in composite processing, Journal of Non-Newtonian Fluid Mechanics, 79, 1998, 585–598.
  • 10. Company directory Havel Composites.
  • 11. Company directory Rymatex.
  • 12. Cullmanna G. Les chaines de Markov multiplles: programmation dynamique. Pris, Masson, 1980.
  • 13. Dekker R, Nicolai R.P, Kallenberg L.C.M, Maintenance and Markov decision models. In Wiley StatsRef: Statistics Reference Online (eds Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels J.L.). John Wiley & Sons, 2014, https://doi.org/10.1002/9781118445112.stat03960.
  • 14. Dong W, Liu S, Yang X, Wang H, Fang Z. Balancing reliability and maintenance cost rate of multistate components with fault interval emission. Maintenance and Reliability. 21(1), 2019, 37–45, https://doi.org/10.17531/ein.2019.1.5.
  • 15. Fleming W.H., Soner H.M. Controlled Markov processes and viscosity solutions. New York. Springer Verlag, 1993.
  • 16. Found M.S, Quaresimin M. Two–stage fatigue loading of woven carbon fiber reinforced laminates, Fatigue Fract. Eng. Mater. Struct. 26, 2003, 17–26.
  • 17. http://www.baltazarkompozyty.pl/index. php?option=com_content&view=article&id=1 72:technologia-worka-prozniowego-vacuumbagging&catid=15&Itemid=46
  • 18. http://forumwodne.pl/hypeboat-polski-producentszybkich-rowerow-wodnych-t27.html
  • 19. Iscioglu F, Kocak A. Dynamic reliability analysis of a multi-state manufacturing system. Maintenance and Reliability, 21(3), 2019, 451–459, https://doi.org/10.17531/ein.2019.3.11.
  • 20. Kaviany, M. Principles of Heat Transfer in Porous Media, Ed., Springer-Verlag, New York, 1995.
  • 21. Kemeny J.G, Snell. J.L. Finite Marcov Chains, Princeton: N.J. Van Nostrand, 1966.
  • 22. Kłonica M. Comparative analysis of effect of thermal shock on adhesive joint strength‎. Advances in Science and Technology Research Journal, 10(32), 2016, 263–268.
  • 23. Kłonica M., Bielawski R. Strength of Joints with “Hi-Lok” Fasteners in Aircraft Safety Considerations. Advances in Science and Technology Research Journal, 13(4), 2019, 87–93.
  • 24. Kozioł M. Vacuum-Presssure-Assisted Impregnation of Stitched and 3D woven Glass-Fiber Preforms, Monograph 644, Publishing Silesian University of Technology, Gliwice, 2016.
  • 25. Kubit A,, Trzepiecinski T,, Kłonica M., Hebda M., Pytel M. The influence of temperature gradient thermal shock cycles on the interlaminar shear strength of fibre metal laminate composite determined by the short beam test. Composites Part B, 176, 2019, 107217.
  • 26. Landowski B, Muślewski Ł, Knopik L, Bojar P. Semi-Markov model of quality state changes of a selected transport system. Journal of KONES, 24(4), 2017, 141–148.
  • 27. Lifshitz J.M. Mechanical Behaviour of Engineering Materials. Vol.2 Dynamic Loading and Intelligent Material Systems, Springer-Science + Business Media, B.V., 2001. https://doi.org/ 10.1007/978–94–010–0436–7.
  • 28. Liu Q, Reifsnider KL. Heterogeneous mixtures of elliptical particles: Directly resolving local and global properties and responses Journal of Computational Physics. 235, 2013, 161–181 https://doi. org/10.1016/j.jcp.2012.09.039.
  • 29. Mahieux C.A., Reifsnider K.L. Property Modeling across Transition Temperatures in Polymers, A. Robust Stiffness-Temperature Model. Polymer, 42, 2001, 3281–3291.
  • 30. Mishnaevsky Jr., L., Brondsted, P. Micromechanics of Damage in Unidirectional Fiber Reinforced Composites: 3D Computational Analysis. Comp. Sci. Tech. 69, 2009, 1036–1044.
  • 31. Paramonov Yu., Andersons J. A family of weakest link models for fibre strength distribution. Composites: Part A38, 2007, 1227–1233.
  • 32. Paramonov Yu.M., Kleinhof M.A., Paramonova A.Yu. Markov Model of Connection Between the Distribution of Static Strength and Fatigue Life of a Fibrous Composite. Mechanics of Composite Materials, 42(5), 2006, 615–630.
  • 33. Paramonov J., Chatys R., Anderson J., Kleinhofs M. Markov Model of Fatigue of a Composite Material with Poisson Process of Defect Initiation, Mechanics of Composite Materials, 48(2), 2012, 211–228.
  • 34. Paramonov J., Kuznetsov A., Kleinhofs M. Realibility of fatigue prone airframes and composite materials, Riga Technical University, 2011.
  • 35. Prusty, B.G., Pan, J.W., Sul, J. Characterization of temperature-dependent behavior of chopped strand mat GRP during low cyclic fatigue, Conference of Composites or Nano Engineering, Honolulu, Hawaii, 2009.
  • 36. Reifsnider KL, Chiu WKS, Brinkman KS, Du Y, Nakajo A, RabbiF., Liu Q. Multiphysics design and development of heterogeneous functional materials for renewable energy devices: The heterofoam story Journal of the Electrochemical Society, 160. 2013, https://doi.org/10.1149/2.012306jes.
  • 37. Reifsnider K.L., Stinchcomb W.W. A Critical-Element Model of the Residual Strength and Life of Fatigue-Loaded Composite Coupons. Composite Materials: Fatigue and Fracture, ASTM STP 907, pp. 298–313.
  • 38. Sul J.H., Prusty B.G., Pan J.W. A fatigue life prediction model for Chopped Strand Mat GRP at elevated temperatures, Fatig. Fract. Eng. Mater. Struct., 33, 2010, 513–521. https://doi.org/10.1111/ j.1460–2695.2010.01460.x.
  • 39. Szala J. Assessment of fatigue life of machine elements under random load conditions and software. Scientific Notebook. 79, Mechanics 22, Bydgoszcz, 1980.
  • 40. White D.J. Markov decision processes. Chichester: John Wiley, 1992.
  • 41. Wu X, Zou X, Guo X. First passage Markov decision processes with constraints and varying discount factors. Frontiers of Mathematics in China. 10(4), 2015, 1005–1023, https://doi.org/10.1007/ s11464–015–0479–6.
  • 42. Van den Heuvel P.W.J. , Goutianos S., Young, R.J., Peijs T. Failure phenomena in fibre–reinforced composites. Part 6: A finite element study of stress concentrations in unidirectional carbon fibre reinforced epoxy composites Compos. Sci. Technol. 64 (5), 2004, 645–656.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f80b3fd1-990c-47be-bc21-0924d53cc5f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.