Tytuł artykułu
Identyfikatory
Warianty tytułu
Kinetyka utleniania stopu Zircaloy-4 w 673 K określona metodą GDOES
Języki publikacji
Abstrakty
Oxidation of zirconium alloys is a process that takes place during the operation of nuclear reactors and is essential for assessing the durability of fuel claddings. The present study was aimed to determine the oxidation kinetics of the Zircaloy-4 alloy using GDOES (glow discharge optical emission spectroscopy) at temperature 673 K corresponding to the conditions of use of fuel pellets. The tests were performed on non-oxidized samples as well as after their oxidation for 0.5, 2, 15 and 48 h. Oxygen layer growth was also investigated by thermogravimetric analysis after oxidation for 0.5 h. The naturally generated oxide at room temperature, designated as non-oxidized, had a thickness of 23±2 nm. After 2 h oxidation, an oxide possessing a thickness of 42±4 nm with about 155 nm of oxygen traces was observed. Oxidation for 15 h resulted in formation of an oxide with a thickness of 130±10 nm with a transition distance to the pure alloy of 240 nm. Finally, a layer with a thickness of 235±10 nm appeared after oxidation for 48 h, while the distance after which the measurement included only a pure alloy without the oxygen traces, was about 310 nm. The results show that oxidation can be described by the exponential kinetic equation, that has the parabolic form after 15 or 48 h of oxidation, which well fits the previous results. However, at shorter oxidation times the kinetic equation has the quasi-parabolic form (n < 2). The reason for changing the form of the equation can be attributed to the effect of defective crystalline structure on oxygen diffusion in the oxide layer as the porosity, crevices and cracks.
W wielu pracach opisano masę tlenku cyrkonu powstającego podczas utleniania równaniem parabolicznym, ale według części autorów zależność ta lepiej daje się opisać równaniem kubicznym. Kinetyka opisana przez tę ostatnią zależność dowodzi, że proces dyfuzji atomów tlenu, który determinuje szybkość tworzenia się tlenku, nie jest procesem homogenicznym zachodzącym w idealnym ciele stałym, ale przebiega głównie na granicy ziaren. Celem pracy było określenie zależności ilościowych między czasem utleniania a grubością warstw tlenków w stosunkowo niskiej temperaturze 673 K, odpowiadającej normalnym warunkom pracy reaktorów jądrowych, za pomocą metody GDOES (optyczna spektrometria emisyjna z wyładowaniem jarzeniowym) rzadko stosowanej do badań takich procesów.
Wydawca
Czasopismo
Rocznik
Tom
Strony
34--38
Opis fizyczny
Bibliogr. 18 poz., fig., tab.
Twórcy
autor
- Rokfin Ltd., Malkowo, Poland
autor
- Universite Bordeaux, Institut de Mecanique et des Materiaux, Bordeaux, France
autor
- Gdansk University of Technology, Department of Materials Engineering and Bonding, Gdansk
Bibliografia
- [1] Duriez C., Dupont T., Schmet B., Enoch F.: Zircaloy-4 and M5® high temperature oxidation and nitriding in air. Journal of Nuclear Materials 380 (2008) 30÷45.
- [2] Yoo H., Koo Bonnie J., Hong J., Hwang I., Jeong Y.: A working hypothesis on oxidation kinetics of Zircaloy. Journal of Nuclear Materials 299 (2001) 235÷241.
- [3] Cox B. J.: Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys. Journal of Nuclear Materials 336 (2005) 331÷368.
- [4] Steinbrück M., Böttcher M.: Air oxidation of Zircaloy-4, M5® and ZIRLOTM cladding alloys at high temperatures. Journal of Nuclear Materials 405 (2011) 276÷285.
- [5] Arima T., Masuzumi T., Furuya H., Idemitsu K., Inagaki Y.: The oxidation kinetics and the structure of the oxide film on Zircaloy before and after the kinetic transition. Journal of Nuclear Materials 294 (2001) 148÷153.
- [6] Qin W., Nam C., Li H., Szpunar J.: Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance. Acta Materialia 55 (2007) 1695÷1701.
- [7] Gong W., Zhang H., Qiao Y., Tian H., Ni X., Li Z., Wang X.: Grain morphology and crystal structure of pre-transition oxides formed on Zircaloy- 4. Corrosion Science 74 (2013) 323÷331.
- [8] Yilmazbayhan A., Motta A. T., Comstock R. J., Sabol G. P., Lai B., Cai Z.: Structure of zirconium alloy oxides formed in pure water studied with synchrotron radiation and optical microscopy: Relation to corrosion rate. Journal of Nuclear Materials 324 (2004) 6÷22.
- [9] Stempniewicz M. M.: Air oxidation of Zircaloy, Part 1 — Review of correlations. Nuclear Engineering and Design 301 (2016) 402÷411.
- [10] Coindreau O., Duriez C., Ederli S.: Air oxidation of Zircaloy-4 in the 600÷1000°C temperature range: Modelling for ASTEC code application. Journal of Nuclear Materials 405 (2010) 207÷215.
- [11] Garner A., Frankel P., Partezana J. M., Preuss M.: The effect of substrate texture and oxidation temperature on oxide texture development in zirconium alloys. Journal of Nuclear Materials 484 (2017) 347÷356.
- [12] Allen T. R., Konings R. J. M., Motta A. T.: Corrosion of zirconium alloys. [In] Comprehensive Nuclear Materials, Elsevier Inc. (2012) 49÷68.
- [13] Leistikow S., Schanz G.: Oxidation kinetics and related phenomena of Zircaloy- 4 fuel cladding exposed to high temperature steam and hydrogensteam mixtures under PWR accident conditions. Nuclear Enginering and Design 103 (1987) 65÷84.
- [14] Hillner E., Franklin D. G., Smee J. D.: Long-term corrosion of Zircaloy before and after irradiation. Journal of Nuclear Materials 278 (2000) 334÷345.
- [15] Gass M., Fenwick M., Hulme H., Waters M., Binks P., Panteli A., Chatterton M., Allen V., Cole-Baker A.: Corrosion of Zircaloys: Relating the microstructural observations to the corrosion kinetics. Journal of Nuclear Materials 509 (2018) 343÷354.
- [16] Stempniewicz M. M.: Air oxidation of Zircaloy. Part 2: New model for Zry-4 oxidation. Nuclear Engineering and Design 301 (2016) 412÷422.
- [17] Suzuki M., Kawasaki S.: Oxidation of zircaloy cladding in air. Journal of Nuclear Materials 140 (1986) 32÷43.
- [18] Powers D., Kmetyk L., Schmidt R.: A review of the technical issues of air ingression during severe reactor accidents. Nuclear Regulatory Commission, Washington, DC (United States).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8096363-81ab-455a-84c0-0f0946c3390a