Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the deep drawing process of an automobile panel in order to select the appropriate amount of parameters has been investigated. The parameters include friction between the blank and die, blank width and length, blank thickness and gap between the blank and blank-holder. A multi-layer artificial neural network (ANN) trained by finite element analyses (FEA) is applied in order to improve forming parameters and achieve a better quality. As the FEA results are used to train the ANN, the FEA results have been verified by three experiments. Finally, an appropriate amount of each parameter is predicted by the trained ANN and a FEA has been done based on the ANN prediction to evaluate the accuracy of the trained ANN. Moreover, it is shown that the ANN could predict results within a 10 percent error. In addition, the proposed method for prediction of the appropriate parameters (ANN) is confirmed by comparing with the Taguchi design of experiment prediction. It is also shown that the model obtained by the former method has lower errors than the latter one. In this study, the Taguchi model is used to evaluate the effect of parameters on tearing and wrinkling. Based on the Taguchi design of experiment, while the blank length is the most effective parameter on tearing, the maximum height of wrinkles on flanged parts mainly depends on the blank thickness.
Czasopismo
Rocznik
Tom
Strony
707--718
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
autor
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
autor
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
Bibliografia
- 1. ABAQUS version 6.11 User Manual
- 2. Candra S., Batan I.M.L., Berata W., Pramono A.S., 2015, Analytical study and FEM simulation of the maximum varying blank holder force to prevent cracking on cylindrical cup deep drawing, Procedia CIRP, 26, 548-553
- 3. Chamekh A., Salah H.B.H., Hambli R., 2009, Inverse technique identification of material parameters using finite element and neural network computation, International Journal of Advanced Manufacturing Technology, 44, 1/2, 173-179
- 4. Colgan M., Monaghan J., 2003, Deep drawing process: analysis and experiment, Journal of Materials Processing Technology, 132, 1, 35-41
- 5. Demirci I.H., Yas¸ar M., Demiray K., Karalı M., 2008, The theoretical and experimental investigation of blank holder forces plate effect in deep drawing process of AL 1050 material, Materials and Design, 29, 2, 526-532, doi:http://dx.doi.org/10.1016/j.matdes.2007.01.008
- 6. El Sherbiny M., Zein H., Abd-Rabou M., El Shazly M., 2014, Thinning and residual stresses of sheet metal in the deep drawing process, Materials and Design, 55, 0, 869-879, doi:http://dx.doi.org/10.1016/j.matdes.2013.10.055
- 7. Fereshteh-Saniee F., Montazeran M.H., 2003, A comparative estimation of the forming load in the deep drawing process, Journal of Materials Processing Technology, 140, 1/3, 555-561, doi: http://dx.doi.org/10.1016/S0924-0136(03)00793-3
- 8. Forouzan S., Akbarzadeh A., 2007, Prediction of effect of thermo-mechanical parameters on mechanical properties and anisotropy of aluminum alloy AA3004 using artificial neural network, Materials and Design, 28, 5, 1678-1684
- 9. Gao E., Li H., Kou H., Chang H., Li J., Zhou L., 2010, Finite element simulation on the deep drawing of titanium thin-walled surface part, Rare Metals, 29, 1, 108-113
- 10. Hashemi R., Ghazanfari A., Abrinia K., Assempour A., 2012, Forming limit diagrams of ground St14 steel sheets with different thicknesses, SAE International Journal of Materials and Manufacturing, 5, 2012-01-0018, 60-64
- 11. Laurent H., Co¨er J., Manach P., Oliveira M., Menezes L., 2015, Experimental and numerical studies on the warm deep drawing of an Al-Mg alloy, International Journal of Mechanical Sciences, 93, 59-72
- 12. Padmanabhan R., Oliveira M., Alves J., Menezes L., 2007, Influence of process parameters on the deep drawing of stainless steel, Finite Elements in Analysis and Design, 43, 14, 1062-1067
- 13. Sezek S., Savas V., Aksakal B., 2010, Effect of die radius on blank holder force and drawing ratio: a model and experimental investigation, Materials and Manufacturing Processes, 25, 7, 557-564
- 14. Singh C.P., Agnihotri G., 2015 Study of deep drawing process parameters: a review, International Journal of Scientific and Research Publication, 5, 2, 1-15
- 15. Singh D., Yousefi R., Boroushaki M., 2011, Identification of optimum parameters of deep drawing of a cylindrical workpiece using neural network and genetic algorithm, World Academy of Science, Engineering and Technology, 78, 211-217
- 16. Watiti V.B., Labeas G.N., 2010, Finite element optimization of deep drawing process forming parameters for magnesium alloys, International Journal of Material Forming, 3, 1, 97-100
- 17. Wifi A., Abdelmaguid T., 2012, Towards an optimized process planning of multistage deep drawing: an overview, Journal of Achievements in Materials and Manufacturing Engineering, 55, 1, 7-17
- 18. Yagami T., Manabe K., Yamauchi Y., 2007, Effect of alternating blank holder motion of drawing and wrinkle elimination on deep-drawability, Journal of Materials Processing Technology, 187, 187-191
- 19. Zein H., El Sherbiny M., Abd-Rabou M., 2014, Thinning and spring back prediction of sheet metal in the deep drawing process, Materials and Design, 53, 797-808
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f808871e-2f2f-4995-af69-5f5598160631