PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temporal stability of soil apparent electrical conductivity (ECa) in managed podzols

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The spatial variability in soil physical and hydraulic properties for a managed podzol was assessed using soil apparent electrical conductivity (ECa). Two EMI sensors, the multi-coil (MC) and multi-frequency (MF), were adopted for measurement of ECa on a silage- corn experimental plot in western Newfoundland, Canada. Results demonstrated a significant relationship between the ECa mean relative differences (MRD) and the soil moisture content MRD (R2=0.33 to 0.70) for both MC and MF sensors. The difference in depth sensitivity between MC and MF sensors accounted for the variation (0.015 to 0.09) in ECa standard deviation of the relative differences. A significant linear relationship was found between the ECa MRD and sand (R2=0.35 and 0.53) or silt (R2=0.43), but not with clay (R2=0.06 and 0.16). The spatial variability of the ECa-based predictions (CV=3.26 to 27.61) of soil properties was lower than the measured values (CV=5.56 to 41.77). These results inferred that the temporal stability of ECa might be a suitable proxy to understand the spatial variability of soil physical and hydraulic properties in agricultural podzols.
Czasopismo
Rocznik
Strony
1107--1118
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
  • School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
autor
  • School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
  • School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
  • School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
Bibliografia
  • 1. Allred BJ, Ehsani MR, Saraswat D (2005) The impact of temperature and shallow hydrologic conditions on the magnitude and spatial pattern consistency of electromagnetic induction measured soil electrical conductivity. Am Soc Agr Eng 48(6):2123–2135
  • 2. Altdorff D, Bechtold M, van der Kruk J, Vereecken H, Huisman JA (2016) Mapping peat layer properties with multi-coil offset electromagnetic induction and laser scanning elevation data. Geoderma 261:178–189
  • 3. Altdorff D, von Hebel C, Borchard N, van der Kruk J, Bogena HR, Vereecken H, Huisman JA (2017a) Potential of catchment-wide soil water content prediction using electromagnetic induction in a forest ecosystem. Environ Earth Sci 76(3):111
  • 4. Altdorff D, Galagedara L, Unc A (2017b) Impact of projected land conversion on water balance of boreal soils in western Newfoundland. J Water Clim Chang 8(4):613–626
  • 5. Altdorff D, Galagedara L, Nadeem M, Cheema M, Unc A (2018) Effect of agronomic treatments on the accuracy of soil moisture mapping by electromagnetic induction. CATENA 164(2018):96–106. https://doi.org/10.1016/j.catena.2017.12.036
  • 6. Badewa E, Unc A, Cheema M, Kavanagh V, Galagedara L (2018) Moisture mapping using multi-frequency and multi-coil electromagnetic induction sensors on managed podzols. Agronomy 8(224):1–16. https://doi.org/10.3390/agronomy8100224
  • 7. Brevik EC, Calzolari C, Miller BA, Pereira P, Kabala C, Baumgarten A, Jordán A (2016) Soil mapping, classification, and modeling: history and future directions. Geoderma 264:256–274
  • 8. Calamita G, Perrone A, Brocca L, Onorati B, Manfreda S (2015) Field test of a multi-frequency electromagnetic induction sensor for soil moisture monitoring in southern Italy test sites. J Hydrol 529:316–329
  • 9. Cockx L, Van Meirvenne M, Verbeke LPC, Simpson D, Saey T, Van Coillie FMB (2009) Extracting topsoil information from EM38DD sensor data using a neural network approach. SSSA J 73(6):2051–2058
  • 10. Corwin D (2008) Past, present, and future trends in soil electrical conductivity measurements using geophysical methods. In: Allred BJ, Daniels JJ, Ehsani MR (eds) Handbook of Agricultural Geophysics. CRC Press, Taylor and Francis Group, Boca Raton, pp 17–44
  • 11. Doolittle JA, Brevik EC (2014) The use of electromagnetic induction techniques in soils studies. Geoderma 223:33–45
  • 12. Fortes R, Millán S, Prieto MH, Campillo C (2015) A methodology based on apparent electrical conductivity and guided soil samples to improve irrigation zoning. Precis Agric 16(4):441–454
  • 13. Geophex Ltd (2004) GEM-2 User’s Manual, Version 3.8. Geophex Ltd., Raleigh, USA. Available at: http://www.geophex.com/Downloads/GEM-2%20Operator’s%20Manual.pdf. Accessed 4 June 2016
  • 14. Gregorich EG, Carter MR (2008) Soil Sampling and Methods of Analysis, 2nd edn. Canadian Society of Soil Science, CRC Press, Boca Raton
  • 15. Greifeneder F, Notarnicola C, Bertoldi G, Niedrist G, Wagner W (2016) From point to pixel scale: an upscaling approach for in situ soil moisture measurements. Vadose Zone J 15(6). https://doi.org/10.2136/vzj2015.03.0048
  • 16. GF Instruments (2011) CMD Electromagnetic conductivity meter user manual V. 1.5. Geophysical Equipment and Services, Czech Republic Available at: http://www.gfinstruments.cz/index.php?menu=gi&smenu=iem&cont=cmd_&ear=ov. Accessed 4 June 2016
  • 17. Hedley CB, Yule IJ (2009) Soil water status mapping and two variable-rate irrigation scenarios. Precis Agric 10:342–355
  • 18. Heil K, Schmidhalter U (2012) Characterisation of soil texture variability using the apparent soil electrical conductivity at a highly variable site. Comput Geosci 39:98–110
  • 19. Heil K, Schmidhalter U (2015) Comparison of the EM38 and EM38-MK2 electromagnetic induction-based sensors for spatial soil analysis at field scale. Comput Electron Agric 110:267–280
  • 20. Huang J, Pedrera-Parrilla A, Vanderlinden K, Taguas EV, Gómez JA, Triantafilis J (2017) Potential to map depth-specific soil organic matter content across an olive grove using quasi-2D and quasi-3D inversion of DUALEM-21 data. CATENA 152:207–217
  • 21. Jiang ZY, Li XY, Wu HW, Xiao X, Chen HY, Wei JQ (2016) Using electromagnetic induction method to reveal dynamics of soil water and salt during continual rainfall events. Biosys Eng 152:3–13
  • 22. Kachanoski RG, Wesenbeeck IV, Jong ED (1990) Field scale patterns of soil water storage from non-contacting measurements of bulk electrical conductivity. Can J Soil Sci 70(3):537–542
  • 23. King JA, Dampney PMR, Lark RM, Wheeler HC, Bradley RI, Mayr TR (2005) Mapping potential crop management zones within fields: use of yield-map series and patterns of soil physical properties identified by electromagnetic induction sensing. Precis Agric 6(2):167–181
  • 24. Kirby GE (1988) Soils of the Pasadena-Deer Lake area, Newfoundland. St. John’s. Retrieved from http://sis.agr.gc.ca/cansis/publications/surveys/nf/nf17/nf17_report.pdf
  • 25. Korsaeth A, Riley H, Kværnø SH, Vestgarden LS (2008) Relations between a commercial soil survey map based on soil apparent electrical conductivity (ECa) and measured soil properties on a morainic soil in Southeast Norway. In: Allred BJ, Daniels JJ, Ehsani MR (eds) Handbook of Agricultural Geophysics. CRC Press, Boca Raton, pp 225–231
  • 26. Liao KH, Zhu Q, Doolittle J (2014) Temporal stability of apparent soil electrical conductivity measured by electromagnetic induction techniques. J Mt Sci 11(1):98–109
  • 27. Lin G, Wang T, Zheng X (2016) Assessing effects of soil hydraulic properties on the temporal stability of absolute soil moisture content and soil moisture anomaly under different climatic conditions. Environ Earth Sci 75(2):143
  • 28. Mankin KR, Karthikeyan R (2002) Field assessment of saline seep remediation using electromagnetic induction. Trans Am Soc Agric Biol Eng 45(1):99–107
  • 29. Martínez G, Vanderlinden K, Giráldez JV, Espejo AJ, Muriel JL (2010) Field-scale soil moisture pattern mapping using electromagnetic induction. Vadose Zone J 9(4):871–881
  • 30. Neely HL, Morgan CL, Hallmark CT, McInnes KJ, Molling CC (2016) Apparent electrical conductivity response to spatially variable vertisol properties. Geoderma 263:168–175
  • 31. Pandey V, Pandey PK (2010) Spatial and temporal variability of soil moisture. Int J Geosci 1(02):87–98
  • 32. Pedrera-Parrilla A, Van De Vijver E, Van Meirvenne M, Espejo-Pérez AJ, Giráldez JV, Vanderlinden K (2016) Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: significance for clay and soil water content mapping. Precis Agric 17(5):531–545
  • 33. Pedrera-Parrilla A, Pachepsky YA, Taguas EV, Martos-Rosillo S, Giráldez JV, Vanderlinden K (2017) Concurrent temporal stability of the apparent electrical conductivity and soil water content. J Hydrol 544:319–326
  • 34. Rezaei M, Saey T, Seuntjens P, Joris I, Boënne W, Van Meirvenne M, Cornelis W (2016) Predicting saturated hydraulic conductivity in a sandy grassland using proximally sensed apparent electrical conductivity. J Appl Geophys 126:35–41
  • 35. Richards LA, Weaver LR (1944) Moisture retention by some irrigated soils as related to soil moisture tension. J Agric Res 69(6):215–235
  • 36. Robinet J, von Hebel C, Govers G, van der Kruk J, Minella JP, Schlesner A, Vanderborght J (2018) Spatial variability of soil water content and soil electrical conductivity across scales derived from electromagnetic induction and time domain reflectometry. Geoderma 314:160–174
  • 37. Robinson DA, Lebron I, Lesch SM, Shouse P (2004) Minimizing drift in electrical conductivity measurements in high temperature environments using the EM-38. SSSA J 68(2):339–345
  • 38. Serrano J, Shahidian S, Silva JMD (2014) Spatial and temporal patterns of apparent electrical conductivity: DUALEM vs. Veris sensors for monitoring soil properties. Sensors 14(6):10024–10041
  • 39. Sherlock MD, McDonnell JJ (2003) A new tool for hillslope hydrologists: spatially distributed groundwater level and soil water content measured using electromagnetic induction. Hydrol Process 17(10):1965–1977
  • 40. Shibusawa S (2006) Soil sensors for precision farming. In: Srinivasan A (ed) Handbook of Precision Agriculture, Principles and Applications. The Haworth Press, New York, pp 57–90
  • 41. Silva BM, Silva ÉAD, Oliveira GCD, Ferreira MM, Serafim ME (2014) Plant-available soil water capacity: estimation methods and implications. Revista Brasileira de Ciência do Solo 38(2):464–475
  • 42. Soil Classification Working Group (1998) The Canadian System of Soil Classification, 3rd edn. Agriculture and Agri-Food Canada Publication, Ottawa
  • 43. Souza ZMD, Marques Júnior J, Pereira GT (2009) Spatial variability of the physical and mineralogical properties of the soil from the areas with variation in landscape shapes. Braz Arch Biol Technol 52(2):305–316
  • 44. Sudduth KA, Kitchen NR, Bollero GA, Bullock DG, Wiebold WJ (2003) Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agron J 95(3):472–482
  • 45. Toushmalani R (2010) Application of geophysical methods in agriculture. Aust J Basic Appl Sci 4(12):6433–6439
  • 46. Tromp-van Meerveld HJ, McDonnell JJ (2009) Assessment of multi-frequency electromagnetic induction for determining soil moisture patterns at the hillslope scale. J Hydrol 368(1):56–67
  • 47. Vachaud G, Passerat de Silans A, Balabanis P, Vauclin M (1985) Temporal stability of spatially measured soil water probability density function. SSSA J 49(4):822–828
  • 48. Van Arkel Z, Kaleita AL (2014) Identifying sampling locations for field-scale soil moisture estimation using K-means clustering. Water Resour Res 50(8):7050–7057
  • 49. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. SSSA J 44(5):892–898
  • 50. von Hebel C, Rudolph S, Mester A, Huisman JA, Kumbhar P, Vereecken H, van der Kruk J (2014) Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data. Water Resour Res 50(3):2732–2748
  • 51. White ML, Shaw JN, Raper RL, Rodekohr D, Wood CW (2012) A multivariate approach for high-resolution soil survey development. Soil Sci 177(5):345–354
  • 52. Williams B, Walker J, Anderson J (2006) Spatial variability of regolith leaching and salinity in relation to whole farm planning. Aust J Exp Agr 46(10):1271–1277
  • 53. Zarlenga A, Fiori A, Russo D (2018) Spatial variability of soil moisture and the scale issue: a geostatistical approach. Water Resour Res 54(3):1765–1780
  • 54. Zhu Q, Lin HS (2009) Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape. Hydrol Earth Syst Sci 13(8):1503–1518
  • 55. Zhu Q, Lin HS (2010) Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes. Pedosphere 20(5):594–606
  • 56. Zhu Q, Lin H, Doolittle J (2010) Repeated electromagnetic induction surveys for determining subsurface hydrologic dynamics in an agricultural landscape. Soil Sci Soc Am J 74(5):1750–1762
  • 57. Zhu Q, Liao K, Xu Y, Yang G, Wu S, Zhou S (2013) Monitoring and prediction of soil moisture spatial–temporal variations from a hydropedological perspective: a review. Soil Res 50(8):625–637
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8058cea-f6ee-49af-917e-330c984bf90a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.