Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Considering the low accuracy and low efficiency of the traditional calibration method for base strain sensitivity of accelerometers, a novel base strain sensitivity calibration system with steady harmonic excitation is proposed. The required cantilever beam for calibration is driven by an electromagnetic exciter to generate a base strain varying in a steady harmonic pattern. By applying a Wheatstone bridge circuit, the generated strain with low distortion can be measured. The measurement system with a compensation function can automatically calibrate the base strain sensitivity. The amplitude linearity and frequency response characteristics of the base strain sensitivity in two accelerometers are obtained experimentally, and the uncertainty in the results is 2% (𝑘 = 2).
Czasopismo
Rocznik
Tom
Strony
751--762
Opis fizyczny
Bibliogr. 20 poz., rys., wykr., wzory
Twórcy
autor
- The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang Province Key Laboratory of Advanced Manufacturing Technology, Zhejiang University, 310027, Hangzhou, China
Bibliografia
- [1] Yaghootkar, B., Azimi, S., & Bahreyni. B. (2017). A high-performance piezoelectric vibration sensor. IEEE Sensors Journal, 17(13), 4005-4012. https://doi.org/10.1109/JSEN.2017.2707063
- [2] Xiaoning, J., Kyungrim, K., Shujun, Z., Joseph J., & Giovanni, S. (2014). High-temperature piezoelectric sensing. Sensors, 14(1), 144-169. https://doi.org/10.3390/s140100144
- [3] Roger, de R., Jens, O. G., & Patrick R. S. (1999). Fabrication and characterization of a piezoelectric accelerometer. Journal of Micromechanics and Microengineering, 9, 123-126. https://doi.org/10.1088/0960-1317/9/2/005
- [4] Kim, K., Zhang, S., Salazar, G., & Jiang, X. (2012). Design, fabrication and characterization of high temperature piezoelectric vibration sensor using YCOB crystals. Sensors and Actuators A: Physical, 178, 40-48. https://doi.org/10.1016/j.sna.2012.02.003
- [5] Shujung, Z., Xiaoning, J., Michael, L., Paul, Moses., & Thomas, R. S. (2010). Piezoelectric accelerometer for ultrahigh temperature application. Applied Physics Letters, 96(1),013506. https://doi.org/10.1063/1.3290251
- [6] Kong, L. F., Yu, F. P., Qin, L. F., Cheng, X. F., & Zhao, X. (2017, October). Performance improvement of CTGS and YCOB crystals for high temperature piezoelectric accelerometer applications. In 2017 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) (pp. 117-120). IEEE. https://doi.org/10.1109/SPAWDA.2017.8340301
- [7] Flanagan, P., & Lekki, J. (2001, November). A self-diagnostic system for the M6 accelerometer. In 37th Joint Propulsion Conference and Exhibit (pp. 3318). https://doi.org/10.2514/6.2001-3318
- [8] Korobiichuk, I., Bezvesilna, O., Kachniarz, M., Koshovyj, M., & Kvasnikov, V. (2017, May). Methods and ways of piezoelectric accelerometers fastening on the objects of research. In Proceedings of the International Conference on Oxide Materials for Electronic Engineering (Vol. 59). http://doi.org/10.12693/APhysPolA.133.1112
- [9] Von Martens, H. J. (1999). Current state and trends of ensuring traceability for vibration and shock measurements. Metrologia, 36(4), 357-373. https://doi.org/10.1088/0026-1394/36/4/16
- [10] Usuda, T., Ohta, A., Ishigami, T., Fuchiwaki, O., Misaki, D., Aoyama, H., & Sato, S. (2004). The current progress of measurement standards for vibration in NMIJ/AIST. In Proceedings of the Sixth International Conference on Vibration Measurements by Laser Techniques: Advances And applications (pp. 30-38). SPIE. https://doi.org/10.1117/12.579527
- [11] Daniel, S., & Christian, H. (2020). Primary accelerometer calibration by scanning laser Doppler vibrometry. Measurement Science and Technology, 31(6), 065006. https://doi.org/10.1088/1361-6501/ab66da
- [12] Jitendra, C., Vijayalakshmi, V., Sridhar, B. (2018). Revamping an Accelerometer calibration SystemA “Better-than-New” Approach. In 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). Gorakhpur, India, 2018, 1-4. https://doi.org/10.1109/UPCON.2018.8596933
- [13] Tian, B., Liu, H., Yang, N., Zhao, Y., & Jiang, Z. (2016). Design of a piezoelectric accelerometer with high sensitivity and low transverse effect. Sensors, 16(10), 1587. https://doi.org/10.3390%2Fs16101587
- [14] International Organization for Standardization. (1987). Standard:5347-0: Methods for the calibration of vibration and shock pick-ups-part 0: Basic concepts. https://www.iso.org/standard/11345.html
- [15] Usuda, T., Weißenborn, C., & Von Martens, H. J. (2004). Theoretical and experimental investigation of transverse sensitivity of accelerometers under multiaxial excitation. Measurement Science and Technology, 15(5), 896-904. https://doi.org/10.1088/0957-0233/15/5/017
- [16] Benjamin, S., Jingxiang, S., Ron-Marco, F., Florian, N., Simon, F., Fabian, L., & Franz, F. (2021). Influence of the piezoelectric material on the signal and noise of magnetoelectric magnetic field sensors based on the delta-E effect. APL Materials, 9, 031108. https://doi.org/10.1063/5.0042448
- [17] Andrea, P., Fabrizio, M. & Alessandro, S. (2020). Traceability of digital 3-axis MEMS accelerometer: simultaneous determination of main and transverse sensitivities in the frequency domain. Metrologia, 57(3), 035013. https://doi.org/10.1088/1681-7575/ab79be
- [18] Du, Y., Gao, G., & Li, T. (2018). A novel method for testing accelerometer transverse sensitivity. Review of Scientific Instruments, 89(12), 125003. https://doi.org/10.1063/1.5034191
- [19] International Organization for Standardization. (1987). Standard:5347-13: Methods for the calibration of vibration and shock pick-ups-part 13: Testing of base strain sensitivity. International Organization for Standardization. https://www.iso.org/standard/11359.html
- [20] International Organization for Standardization. (2008). JCGM 100: Evaluation of measurement data-guide to the expression of uncertainty in measurement. International Organization for Standardization. https://ncc.nesdis.noaa.gov/documents/documentation/JCGM_100_2008_E.pdf
Uwagi
1. This work was supported in part by the National Key R&D Program of China (Grant No. 2019YFC 1509503), in part by the National Science and Technology Major Project (Grant No. 2016ZX05008008), and in part by the National Natural Science Foundation of China (Grant No. 51875520).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f803b337-f3e5-424a-8b9c-45a0faca1e72