PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D Incompressible Turbulent Flow in a Parallelipipedic Cavity

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work investigates the turbulent flow in a ventilated cavity by means of numerical simulations. In particular, simulations are performed using a parallel compact fourth-order spatial discretization and the sub-grid scale (SGS) model Wall Adapting Local Eddy (WALE). Results focuses on the turbulence statistics and are validated against experimental data, for which a good agreement is observed. So, this contribution illustrates how compact schemes can be used to combine high-order accuracy with complex flow.
Słowa kluczowe
Rocznik
Strony
5--18
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
  • Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique, EA 4217
  • Université de Tunis El Manar, Laboratoire de Génie Civil, Ecole Nationale d’Ingénieurs de Tunis
autor
  • Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique, EA 4217
autor
  • Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique, EA 4217
autor
  • Université de Tunis El Manar, Laboratoire de Génie Civil, Ecole Nationale d’Ingénieurs de Tunis
Bibliografia
  • 1. Abide, S. and Viazzo, S. (2005). A 2d compact fourth-order projection decomposition method. Journal of Computational Physics, 206(1):252–276.
  • 2. Ameziani, D., Guo, Y., Bennacer, R., El Ganaoui, M., and Bouzidi, M. (2008). Competition between lid driven and natural convection in square cavity: lattice Boltzmann method. In International Symposium in Computational Heat Transfer (CHT’08), pages 20–pages. Begell House.
  • 3. Ben-Cheikh, N., Hammami, F., Campo, A., and Ben-Beya, B. (2012a). A dynamic sub-grid scale model for large eddy simulation of turbulent flows in a lid-driven cubical cavity. Comptes Rendus Mécanique, 340(10):721–730.
  • 4. Ben-Cheikh, N., Hammami, F., Campo, A., and Ben-Beya, B. (2012b). A dynamic sub-grid scale model for large eddy simulation of turbulent flows in a lid-driven cubical cavity. Comptes Rendus Mécanique, 340(10):721–730.
  • 5. Chen, Q. (1995). Comparison of different κ-ε models for indoor air flow computations. Numerical Heat Transfer, Part B Fundamentals, 28(3):353–369.
  • 6. Chen, Wei Zhang, Q. (2000). Large eddy simulation of natural and mixed Convection airflow indoors with two simple filtered dynamic subgrid scale models. Numerical Heat Transfer: Part A: Applications, 37(5):447–463.
  • 7. Davidson, L. and Nielsen, P. V. (1996). Large eddy simulations of the flow in a three-dimensional ventilated room.
  • 8. Ezzouhri, R., Joubert, P., Penot, F., and Mergui, S. (2009). Large eddy simulation of turbulent mixed convection in a 3d ventilated cavity: Comparison with existing data. International Journal of Thermal Sciences, 48(11):2017–2024.
  • 9. Jarrin, N., Benhamadouche, S., Addad, Y., and Laurence, D. (2003). Synthetic turbulent in flow conditions for large eddy simulation. In Proceedings, 4th International Turbulence, Heat and Mass Transfer Conference, Antalya, Turkey.
  • 10. Knikker, R. (2009). Study of a staggered fourth-order compact scheme for unsteady incompressible viscous flows. International Journal for Numerical Methods in Fluids, 59(10):1063–1092.
  • 11. Larocque, J., Vincent, S., Lacanette, D., Lubin, P., and Caltagirone, J.-P. (2010). Parametric study of les subgrid terms in a turbulent phase separation flow. International Journal of Heat and Fluid Flow, 31(4):536–544.
  • 12. Le, H. and Moin, P. (1991). An improvement of fractional step methods for the incompressible Navier-Stokes equations. Journal of Computational Physics, 92(2):369–379.
  • 13. Lele, S. K. (1992). Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103(1):16–42.
  • 14. Limane, A., Fellouah, H., and Galanis, N. (2015). Thermo-ventilation study by open foam of the airflow in a cavity with heated floor. In Building Simulation, volume 8, pages 271–283. Springer.
  • 15. Lu, W., Howarth, A. T., and Jeary, A. P. (1997). Prediction of airflow and temperature field in a room with convective heat source. Building and Environment, 32(6):541–550.
  • 16. Moser, A. (1991). The message of annex 20: Air flow patterns within buildings. In Proc. 12 th AIVC conference.
  • 17. Murakami, S., Ooka, R., Kato, S., Iizuka, S., and Mochida, A. (1996). Numerical prediction of flow around a building with various turbulence models: Comparison of {κ}-{ε} EVM, ASM, DSM, and LES wind tunnel tests. Technical report, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (United States).
  • 18. Nielsen, P. V. (1990). Specification of a two-dimensional test case:(IEA). Technical report, Institut for Bygningsteknik, Aalborg Universitet.
  • 19. Nielsen, P. V., Restivo, A., and Whitelaw, J. (1978a). The velocity characteristics of ventilated rooms. Journal of Fluids Engineering, 100(3):291–298.
  • 20. Nielsen, P. V., Restivo, A., and Whitelaw, J. (1978b). The velocity characteristics of ventilated rooms. Journal of Fluids Engineering, 100(3):291–298.
  • 21. Nielsen, P. V., Restivo, A., and Whitelaw, J. (1979). Buoyancy affected flows in ventilated rooms. Numerical Heat Transfer, 2(1):115–127.
  • 22. Orlanski, I. (1976). A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics, 21(3):251–269.
  • 23. Posner, J., Buchanan, C., and Dunn-Rankin, D. (2003). Measurement and prediction of indoor air flow in a model room. Energy and Buildings, 35(5):515–526.
  • 24. Prasad, A. K. and Koseff, J. R. (1989). Reynolds number and end-wall effects on a lid-driven cavity flow. Physics of Fluids, 1(May 2015):208.
  • 25. Schiestel, R. and Viazzo, S. (1995). A Hermitian-Fourier numerical method for solving the incompressible Navier-Stokes equations. Computers & fluids, 24(6):739–752.
  • 26. Sparrow, E., Minkowycz, W., and Saddy, M. (1967). Forced convection condensation in the presence of noncondensables and interfacial resistance. International Journal of Heat and Mass Transfer, 10(12):1829–1845.
Uwagi
PL
W bibliografii do artykułu pozycje 3. i 4. oraz 19. i 20. zostały powielone.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7fcd2bd-e2a5-4eca-81ca-0f06fc6ccd07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.