PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The biological monitoring as a source of information on environmental pollution with heavy metals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of environmental pollution on living organisms has been known for a long time, but it was not until the second half of the twentieth century that methodical studies on the influence of anthropopressure on changes in ecosystems began. Living organisms began to be used as biological indicators of environmental pollution. Cyclical and quantitative studies of pollutant concentrations in bioaccumulators have become the basis of modern biological monitoring (biomonitoring) of environmental pollution. Biomonitoring studies are carried out with the passive method (passive biomonitoring), in which living organisms occurring in their natural environment are analysed, and with active methods (active biomonitoring), in which, for example, plants living in the environment with low pollution are transferred and displayed in more polluted ecosystems e.g. heavy metals. The analysis of trace elements, including heavy metals accumulated in algae, mosses and lichens used in biological monitoring provides a lot of information on, among others concentration and origin of pollutants and the directions of their spread. Biomonitoring is used to assess the level of contamination of selected ecosystems, as well as the impact of individual emitters on the environment. An important element in determining the concentrations of trace elements in biological material used in biomonitoring is the proper planning of the experiment, taking into account, among others: methods of collecting or exposing samples, selection of analytical methods and methods of evaluation and interpretation of results. The aim of the presented long-term research, conducted by the Research Team of the Institute of Biology of the University of Opole, was to show that analytical techniques using biota samples can provide reliable data on the past, present and future state of the environment. However, it should be remembered that in order for the results of biomonitoring studies to be reliable and comparable, the applied research methodologies should be consistent and repeatable. In the presented research, Palmaria palmata and Spirogyra sp. algae, Pleurozium schreberi mosses, Hypogymnia physodes and bark of deciduous trees were used. In samples of biological material by the method of atomic absorption spectrometry, the concentrations of heavy metals, including Ni, Cu, Zn, Cd and Pb, were determined. On the basis of the conducted research, it was unequivocally stated that the biomonitoring methods are a good complement to the classic methods of environmental quality assessment. The analysis of the elements accumulated in the biological material provides us with information about the quality of the examined ecosystems, the introduced pollutants and their potential sources. This information allows for the introduction of effective measures to improve the quality of the environment.
Rocznik
Strony
53--78
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
  • European Academy of Sciences and Arts, Salzburg, Austria
  • Institute of Biology, University of Opole, ul. kard. B. Kominka 6a, 45-032 Opole, Poland
  • Institute of Biology, University of Opole, ul. kard. B. Kominka 6a, 45-032 Opole, Poland
Bibliografia
  • [1] Wardencki W, editor. Bioanalityka w ocenie zanieczyszczeń środowiska [Bioanalytics in the assessment of environmental pollution]. Gdańsk: CEEAM; 2004. ISBN: 839190816X.
  • [2] Aničić Urošević M, Milićević T. Moss Bag Biomonitoring of Airborne Pollutants as an Ecosustainable Tool for Air Protection Management: Urban and Agricultural Scenario. In: Shukla V, Kumar N, editors. Environmental Concerns and Sustainable Development. Singapore: Springer; 2020. 29-60. DOI: 10.1007/978-981-13-5889-0_2.
  • [3] Szczepaniak K, Biziuk M. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ Res. 2003;93(3):221-30. DOI: 10.1016/S0013-9351(03)00141-5.
  • [4] Gallego-Cartagena E, Morillas H, Carrero JA, Madariaga JM, Maguregui M. Naturally growing grimmiaceae family mosses as passive biomonitors of heavy metals pollution in urban-industrial atmospheres from the Bilbao Metropolitan area. Chemosphere. 2021;263:1-15. DOI: 10.1016/j.chemosphere.2020.128190.
  • [5] Hussain S, Hoque RR. Biomonitoring of metallic air pollutants in unique habitations of the Brahmaputra Valley using moss species - Atrichum angustatum: spatiotemporal deposition patterns and sources. Environ Sci Pollut Res. 2022;29:10617-34. DOI: 10.1007/s11356-021-16153-x.
  • [6] Sorrentino MC, Capozzi F, Wuyts K, Joosen S, Mubiana VK, Giordano S, et al. Mobile biomonitoring of atmospheric pollution: A new perspective for the moss-bag approach. Plants. 2021;10:1-13. DOI: 10.3390/plants10112384.
  • [7] Ștefănuț S, Öllerer K, Manole A, Ion MC, Constantin M, Banciu C, et al. National environmental quality assessment and monitoring of atmospheric heavy metal pollution - A moss bag approach. J Environ Manage. 2019;248:109224. DOI: 10.1016/j.jenvman.2019.06.125.
  • [8] Morales-Casa V, Rebolledo J, Ginocchio R, Saéz-Navarrete C. The effect of “moss bag” shape in the air monitoring of metal(oid)s in semi-arid sites: Influence of wind speed and moss porosity. Atmos Pollut Res. 2019;10:1921-30. DOI: 10.1016/j.apr.2019.08.005.
  • [9] Rogova N, Ryzhakova N, Gusvitskii K, Eruntsov V. Studying the influence of seasonal conditions and period of exposure on trace element concentrations in the moss-transplant Pylaisia polyantha. Environ Monit Assess. 2021;193:1-9. DOI: 10.1007/s10661-021-08900-x.
  • [10] Bowie MH, Stokvis E, Barber K, Marris J, Hodge S. Identification of potential invertebrate bioindicators of restoration trajectory at a quarry site in Hunua, Auckland, New Zealand. N Z J Ecol. 2019;43:1-11. Available from: https://www.researchgate.net/publication/329842986_Identification_of_potential_invertebrate_bioindicators_of_restoration_trajectory_at_a_quarry_site_in_Hunua_Auckland_New_Zealand#fullTextFileContent.
  • [11] Giráldez P, Varela Z, Aboal JR, Fernández JÁ. Testing different methods of estimating edaphic inputs in moss biomonitoring. Sci Total Environ. 2021;778:146332. DOI: 10.1016/j.scitotenv.2021.146332.
  • [12] Stojanowska A, Mach T, Olszowski T, Bihałowicz JS, Górka M, Rybak J, et al. Air pollution research based on spider web and parallel continuous particulate monitoring - a comparison study coupled with identification of sources. Minerals. 2021;11:1-20. DOI: 10.3390/min11080812.
  • [13] Winkler A, Contardo T, Lapenta V, Sgamellotti A, Loppi S. Assessing the impact of vehicular particulate matter on cultural heritage by magnetic biomonitoring at Villa Farnesina in Rome, Italy. Sci Total Environ. 2022;823:153729. DOI: 10.1016/j.scitotenv.2022.153729.
  • [14] Contardo T, Vannini A, Sharma K, Giordani P, Loppi S. Disentangling sources of trace element air pollution in complex urban areas by lichen biomonitoring. A case study in Milan (Italy). Chemosphere. 2020;256:127155. DOI: 10.1016/j.chemosphere.2020.127155.
  • [15] Gao G, Zeng H, Zhou Q. Biomonitoring atmospheric pollution of polycyclic aromatic hydrocarbons using mosses. Atmosphere. 2023;14:1-16. DOI: 10.3390/atmos14010026.
  • [16] Cowden P, Aherne J. Assessment of atmospheric metal deposition by moss biomonitoring in a region under the influence of a long standing active aluminium smelter. Atmos Environ. 2019;201:84-91. DOI: 10.1016/j.atmosenv.2018.12.022.
  • [17] Dołęgowska S, Migaszewski ZM. Biomonitoring with mosses: Uncertainties related to sampling period, intra-site variability, and cleaning treatments. Ecol Indic. 2019;101:296-302. DOI: 10.1016/j.ecolind.2019.01.033.
  • [18] Kousehlar M, Widom E, Kuentz D. Osmium isotope geochemistry of steel plant emissions using tree bark biomonitoring. Environ Pollut. 2021;272:115976. DOI: 10.1016/j.envpol.2020.115976.
  • [19] Fang T, Jiang T, Yang K, Li J, Liang Y, Zhao X, et al. Biomonitoring of heavy metal contamination with roadside trees from metropolitan area of Hefei, China. Environ Monit Assess. 2021;193:1-14. DOI: 10.1007/s10661-021-08926-1.
  • [20] Słonina N, Świsłowski P, Rajfur M. Passive and active biomonitoring of atmospheric aerosol with the use of mosses. Ecol Chem Eng S. 2021;28:163-72. DOI: 10.2478/eces-2021-0012.
  • [21] Świsłowski P, Ziembik Z, Rajfur M. Air quality during new year’s eve: A biomonitoring study with moss. Atmosphere. 2021;12:1-13. DOI: 10.3390/atmos12080975.
  • [22] Bowden JA, Nocito BA, Lowers RH, Guillette LJ, Williams KR, Young VY. Environmental indicators of metal pollution and emission: An experiment for the instrumental analysis laboratory. J Chem Educ. 2012;89:1057-60. DOI: 10.1021/ed200490y.
  • [23] Içel Y, Çobanoǧlu G. Biomonitoring of atmospheric heavy metal pollution using lichens and mosses in the city of Istanbul, Turkey. Fresenius Environ Bull. 2009;18:2066-71. Available from: https://www.researchgate.net/publication/287706544_Biomonitoring_of_atmospheric_heavy_metal_pollution_using_lichens_and_mosses_in_the_city_of_Istanbul_Turkey#fullTextFileContent.
  • [24] Pongpiachan S, Iijima A, Cao J. Hazard quotients, hazard indexes, and cancer risks of toxic metals in PM10 during firework displays. Atmosphere. 2018;9:1-18. DOI: 10.3390/atmos9040144.
  • [25] Kłos A, Rajfur M, Wacławek M, Wacławek W. Impact of roadway particulate matter on deposition of pollutants in the vicinity of main roads. Environ Prot Eng. 2009;35:105-21.
  • [26] Urošević MA, Lazo P, Stafilov T, Nečemer M, Andonovska KB, Balabanova B, et al. Active biomonitoring of potentially toxic elements in urban air by two distinct moss species and two analytical techniques: a pan-Southeastern European study. Air Qual Atmos Health. 2022:1-18. DOI: 10.1007/s11869-022-01291-z.
  • [27] Yatim NM, Azman NIA. Moss as bio-indicator for air quality monitoring at different air quality environment. Int J Eng Adv Technol. 2021;10:43-7. DOI: 10.35940/ijeat.e2579.0610521.
  • [28] Pelit FO, Demirdöğen RE, Henden E. Investigation of heavy metal content of Turkish tobacco leaves, cigarette butt, ash, and smoke. Environ Monit Assess. 2013;185:9471-9. DOI: 10.1007/s10661-013-3266-4.
  • [29] Gill B, Britz-McKibbin P. Biomonitoring of smoke exposure in firefighters: a review. Curr Opin Environ Sci Health. 2020;15:57-65. DOI: 10.1016/j.coesh.2020.04.002.
  • [30] Rajfur M, Świsłowski P, Nowainski F, Śmiechowicz B. Mosses as biomonitor of air pollution with analytes originating from tobacco smoke. Chem Didact Ecol Metrol. 2018;23:127-36. DOI: 10.1515/cdem-2018-0008.
  • [31] Świsłowski P, Kříž J, Rajfur M. The use of bark in biomonitoring heavy metal pollution of forest areas on the example of selected areas in Poland. Ecol Chem Eng S. 2020;27(2):195-210. DOI: 10.2478/eces-2020-0013.
  • [32] Debén S, Fernández JA, Giráldez P, Vázquez Arias A, Aboal JR. Methodological advances to biomonitor water quality with transplanted aquatic mosses. Sci Total Environ. 2020;706:136082. DOI: 10.1016/j.scitotenv.2019.136082.
  • [33] Debén S, Aboal JR, Giráldez P, Varela Z, Fernández JA. Developing a biotechnological tool for monitoring water quality: In vitro clone culture of the aquatic moss fontinalis antipyretica. Water. 2019;11:1-10. DOI: 10.3390/w11010145.
  • [34] Rakib MRJ, Jolly YN, Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE, Khandaker MU, et al. Macroalgae in biomonitoring of metal pollution in the Bay of Bengal coastal waters of Cox’s Bazar and surrounding areas. Sci Rep. 2021;11:1-13. DOI: 10.1038/s41598-021-99750-7.
  • [35] García-Seoane R, Fernández JA, Villares R, Aboal JR. Use of macroalgae to biomonitor pollutants in coastal waters: Optimization of the methodology. Ecol Indic. 2018;84:710-26. DOI: 10.1016/j.ecolind.2017.09.015.
  • [36] Al-Homaidan AA, Al-Ghanayem AA, Al-Qahtani HS, Al-Abbad AF, Alabdullatif JA, Alwakeel SS, et al. Effect of sampling time on the heavy metal concentrations of brown algae: A bioindicator study on the Arabian Gulf coast. Chemosphere. 2021;263:127998. DOI: 10.1016/j.chemosphere.2020.127998.
  • [37] Haghshenas V, Kafaei R, Tahmasebi R, Dobaradaran S, Hashemi S, Sahebi S, et al. Potential of green/brown algae for monitoring of metal(loid)s pollution in the coastal seawater and sediments of the Persian Gulf: ecological and health risk assessment. Environ Sci Pollut Res. 2020;27:7463-75. DOI: 10.1007/s11356-019-07481-0.
  • [38] Kamala-Kannan S, Prabhu Dass Batvari B, Lee KJ, Kannan N, Krishnamoorthy R, Shanthi K, et al. Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India. Chemosphere. 2008;71:1233-40. DOI: 10.1016/j.chemosphere.2007.12.004.
  • [39] Gupta A. Heavy metals in water, periphytonic algae, detritus, and insects from two streams in Shillong, Notheastern India. Environ Monit Assess. 1996;40:215-23. DOI: 10.1007/BF00398867.
  • [40] Topcuoǧlu S, Kirbaşoǧlu Ç, Güngör N. Heavy metals in organisms and sediments from Turkish coast of the Black Sea, 1997-1998. Environ Int. 2002;27:521-6. DOI: 10.1016/S0160-4120(01)00099-X.
  • [41] Michalak A, Świsłowski P, Rajfur M. The assessment of heavy metal contamination of the cultivated soils in the odra river floodplain. Chem Didact Ecol Metrol. 2021; 26(1-2):55-64. DOI: 10.2478/cdem-2021-0004.
  • [42] Rajfur M, Klos A, Waclawek M. Algae utilization in assessment of the large Turawa Lake (Poland) pollution with heavy metals. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng. 2011;46:1401-8. DOI: 10.1080/10934529.2011.606717.
  • [43] Absalon D, Matysik M, Habel M. Water quality in main dam reservoirs in Poland. Qual Water Resour Pol Sprin Wat. 2021:145-71. DOI: 10.1007/978-3-030-64892-3_7.
  • [44] Aleksiayenak Y, Frontasyeva M. A ten-year biomonitoring study of atmospheric deposition of trace elements at the territory of the Republic of Belarus. Ecol Chem Eng S. 2019;26(3):455-64. DOI: 10.1515/eces-2019-0034.
  • [45] Mahapatra B, Dhal NK, Dash AK, Panda BP, Panigrahi KCS, Pradhan A. Perspective of mitigating atmospheric heavy metal pollution: using mosses as biomonitoring and indicator organism. Environ Sci Pollut Res. 2019;26:29620-38. DOI: 10.1007/s11356-019-06270-z.
  • [46] Vuković G, Aničić Uroševic M, Razumenić I, Kuzmanoski M, Pergal M, Škrivanj S, et al. Air quality in urban parking garages (PM10, major and trace elements, PAHs): Instrumental measurements vs. active moss biomonitoring. Atmos Environ. 2014;85:31-40. DOI: 10.1016/j.atmosenv.2013.11.053.
  • [47] Maćkiewicz E, Pawlaczyk A, Szynkowska MI. Trace elements in the environment-law, regulations, monitoring and biomonitoring methods. Recent Adv Trace Elem. 2018:61-104. DOI: 10.1002/9781119133780.ch4.
  • [48] Svozilík V, Krakovská AS, Bitta J, Jančík P. Comparison of the air pollution mathematical model of PM10 and moss biomonitoring results in the Tritia region. Atmosphere. 2021;12:1-24. DOI: 10.3390/atmos12060656.
Uwagi
1) Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2) Artykuł w formie prezentacji.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7f00540-c8d2-4b40-9359-cf639e4e0e85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.