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ABSTRACT 

The paper is concerned on a new adequate theory of a simple mathematical pendulum. Part 1 of 

the paper was devoted to the behaviour of pendulum in particular points, that is central and 

terminal/extremum ones. This Part 2 of the theory begins with the analysis of path length of the 

pendulum weight. Then the kinetics of the pendulum weight is analyzed by separating and the 

descriptions of differentiated motion of this body in the consecutive neighbouring space-times 

corresponding with particular quarter-periods. It is about accelerated free variable motion and the 

following after it a retarded motion of this kind, and then again accelerated, etc. In the summary, 

further elaborations in the subject are forecasted, regarding both dynamics and energy of the flat 

mathematical pendulum. It is indicated that the necessity to “rethink” many existent theories is of 

importance. 
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1.  INTRODUCTION 

The work is devoted to the simple mathematical pendulum with the first part given in 

[1]. The existent theory of the mathematical pendulum is commonly known and its critics was 

presented earlier [2,3]. 

A motivation of the subject was revealed in the first part of the work. Part 2 of the 

article is to provide with the solution covering the path length and kinetic derivatives of the 

pendulum weight leaving the energy and dynamics problems for consideration in the 

following studies. 

The shortcomings of the existent theory provide a sufficient basis to undertake the 

subject studies. A new theory of mathematical pendulum will be presented, without the 

drawbacks of up-to-date approach to describe the real pendulum behaviours. 
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2.  PATH/TRACK LENGTH OF THE PENDULUM WEIGHT 

 

The path length – that should be noticed – is not the same as the length of 

track/trajectory of a material body; in reference to the described reality the body is the weight 

of pendulum. The notion of path length was explained also in the previous work [4], devoted 

to the kinetics of tool edge fixed flexibly. 

That first physical magnitude (path length) is a primary magnitude which then may be 

brought to other, derivative magnitudes, by the differentiating. Differentiating the track of the 

material body makes no sense because its derivatives (considered against time) do not 

correspond with the consecutive kinetic magnitudes. Only differentiating the path length 

against time results  in obtaining the derivatives of kinetic time characteristics. The value of 

path length should be first zero, then positive and growing (progressively or degressively), 

because only in that case the magnitude has a physical sense; no negative magnitudes should 

be assumed. All those mentioned time characteristics result from the source differential 

equation, with the form and resulting from it the detailed configurations (referred to different 

fragments of reality) which are given in literature [4-10]. The general differential equation has 

the following form: 
 

                                                           dN
N

Z
dZ




                                                            (1) 

 

where: dZ   total differential of dependent variable; dN   total differential of independent 

variable; NZ  /   partial derivative of dependent variable, referred to independent variable. 

Signs    are the algebraic operators which fulfill a determined role. The sign    has a 

formal meaning which just confirms physical sense of a determined dependence. The sign    

provides such a sense to a determined record [11-15]. 

The considered variables here are: angular path length φ of the pendulum weight, as 

well as time t of the weight motion. These parameters determine the instantaneous position of 

the body, considered against its starting/initial interstate position (Fig. 1). 

For the considered variables the formula (1) takes the form: 

 

                                                        dt
t

d






                                                                (2) 

 

with a dependent variable being the path length φ, and the independent variable – time t. It is 

worth adding, that the differential equation for a retarded motion will contain the operator  
, whereas the accelerated motion will be described by equation of this type with the sign   , 

which, as can be noticed, does not have to be derived. 

Thus for the accelerated motion, taking place between the initial 00   and central 11  

positions of the pendulum weight, that is between the following instantaneous static potential 

fields: unstable  ASPF  and stable  SSPF , the equation (2) will assume the following 

form: 

 

                                                              dt
t

d






                                                                 (3) 
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For the considered variables the formula (1) takes the form: 

 

                                                            
dt

t
d







                                                            (2) 

 

with a dependent variable being the path length φ, and the independent variable – time t. It is 

worth adding, that the differential equation for a retarded motion will contain the operator  
, whereas the accelerated motion will be described by equation of this type with the sign   , 

which, as can be noticed, does not have to be derived. 

Thus for the accelerated motion, taking place between the initial 00   and central 11  

positions of the pendulum weight, that is between the following instantaneous static potential 

fields: unstable  ASPF  and stable  SSPF , the equation (2) will assume the following 

form: 

 

                                                                dt
t

d






                                                              (3) 

Fig. 1. Interstate position of pendulum weight. 
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Now two-side integrating of the dependence is needed taking into consideration that the 

total differential is the state function. That requires further determination of the states which 

are the limits of integrating: lower and upper. 

A scheme of creating the adequate description of dependence  tf  is presented in 

Fig. 2 with all elements of the reasoning process. The curve illustrating that dependence 

comes out of the initial point of coordinates 0,0  t , and then it takes exponential and 

progressively rising course. It terminates its course in the point 1, where the accelerated 

motion of pendulum weight has its end. 

 
The mentioned limits are potential fields. They were discussed before [5-8] and here 

treated in more detail. They are referred to both considered physical magnitudes that is the 

angular path length φ and time t. There are the following instantaneous fields: angular 

unstable static potential field  0ASPF , time unstable static potential field  0tASPF , angular 

stable static potential field  1SSPF , and time stable static potential field  1tSSPF . All these 

fields are  the limits of space-time (dotted area). 

Fig. 2. Indicatrix of dependence of the pendulum weight path length on time of its accelerated motion. 
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Progressively increasing the exponential curve is the result of moving the rectangular 

triangle  with the horizontal leg being constant and equal time constant  , whereas the 

vertical leg varies respectively, being the sum of coordinate φ and the length   of space-

time. 

Time constant  is the time corresponding with the position of crossing point of tangent 

to the curve of path length (in an initial point) with the line of neighbouring position of 

angular potential field, that is  1SSPF . The time constant   is the time coordinate, abscissa 

of the mentioned point. That time constant may be interpreted in other way, namely: it is the 

transition time of pendulum weight, the transition with initial velocity on the neighbouring 

potential field. 

It results from the definition of the initial angular velocity, that is the quotient  

 

                                                                





0                                                                  (4) 

 

where, as noticed, the symbol 
  determines the length of space-time (distance between the 

neighbouring potential fields, considered in the direction of angular path length φ). Therefore 

 

                                                               
0



                                                                    (5) 

 

Now, by integrating the equation (3), the limits of integrals of the total differentials are 

marked, then 

 

                                                          








t

t

dt
t

d








2

                                                         (6) 

 

and further 

 

                                                          

dt

d
                                                            (7) 

 

or 

 

                                                            dt
d




 

1




                                                          (8) 

 

As can be noticed, the partial derivative has been substituted by the quotient of 

common/total differentials. It could be done that way because the total differentials have been 

firmly determined – by introducing limits of their integrals. 

Further on, by integrating both sides of equation (8), one obtains the following result 
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                                                     


 Ct
1

ln                                                         (9) 

 

that is 

 

                                        


 


 tt

C
C

t

Ceeee                                             (10) 

 

By regarding that for 0t  the magnitude 0 , one obtains 

 

                                                                
C                                                                   (11) 

 

and after substituting (11) to (10) 

 

                                                           












  1

t

e                                                          (12) 

 

Now one may determine the second coordinate of point 1, that is 10t . It is obtained by 

introducing the parameter   and the mentioned coordinate to equation (12). Therefore 

 

                                                                2ln10 t                                                              (13) 

 

and 

 

                                                                  
2ln

10
t

                                                               (14) 

 

It is worth adding, that 10t  corresponds with a quarter-period T  of pendulum 

vibrations. Thus 

 

                                                            2ln10  

 Tt                                                         (15) 

 

and the whole period of vibrations T contains four those quarter-periods T , that is 

 

                                                                   TT 4                                                                (16) 

 

For a retarded pendulum motion, taking place in the time corresponding with the second  

quarter-period T , that is occurring between the fields 11  and 22  (see Fig. 2), the 

equation (2) assumes the following form 

 

                                                              dt
t

d






                                                            (17) 
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Now integrating of the dependence on both sides is to be performed, taking into 

consideration that the total differential is the state function. That again requires determination 

of states that is limits of integrating: bottom and top. 

The scheme of creation of adequate description of the dependence  tf  is presented 

in Fig. 3 – revealing all elements of that reasoning. The curve illustrating that dependence 

comes out of the initial point of coordinates 0,0  t , and further it has exponential and 

degressively rising course. It terminates its real course in the point 2, where the retarded 

motion of the pendulum weight has its end. 

 
Fig. 3. Indicatrix of dependence of the pendulum weight path length on time of its retarded motion. 

 

 

The mentioned limits, concerning the studied reality, are the potential fields; they were 

discussed before. Further on, an additional field is to be introduced, namely the nominal 

potential field NPF. Its essence will be clarified next. 

The curve of the path length, contained between the points 21 , is the envelope of 

rectangular triangles, moving by its horizontal leg onto the mentioned nominal potential field; 

here the horizontal leg is invariable and equaled to the time constant  , and the vertical leg 

varies respectively, decreasing during transition of the triangle in the time direction. That 
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nominal field is situated symmetrically against the level of end of the described reality, in the 

distance from it equal to the length of real space-time in the direction of path length, that is 


  21 . 

Therefore, over the real/proper space-time (dotted area),  there is an improper space-

time situated, where the curve (dashed line) tends toward the asymptote, being the mentioned 

potential field. That is an auxiliary design needed to describe the real curve, reflecting the 

dependence of φ upon t. 

Now one may begin integrating the equation (17). By integrating that equation, the 

limits of integrals of the total differentials should be determined. That means 

 

                                                           








t

t

dt
t

d








2

                                                        (18) 

 

and further 

 

                                                           

dt

d
2                                                        (19) 

 

or 

 

                                                           dt
d






1

2 


                                                        (20) 

 

One may notice that here the partial derivative has been substituted by the quotient of 

total differentials as the total differentials have been clearly determined by introducing the 

limits of their integrals. 

Further on, by integrating both sides of equation (20), one obtains the following result 

 

                                                        


 Ct
1

2ln                                                     (21) 

 

that is  

 

                                            








 


 tt

C
C

t

Ceeee2                                          (22) 

 

By regarding that for 0,0  t  

 

                                                                   
 2C                                                                (23) 

 

and after substituting (23) to (22) 

 

                                                           












 




t

e12                                                         (24) 
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One should explain that the description is related to the next, new phenomenon, that is the 

phenomenon of retarded variable motion; this is why the initial conditions were  0,0  t . 

Now one may determine the second coordinate of point 2, that is 21t . It is obtained by 

introducing the parameter   and the mentioned time coordinate to equation (24). Therefore 

 

                                                                 2ln21 t                                                            (25) 

 

and 

 

                                                                   
2ln

21
t

                                                              (26) 

 

Thus the equation (24) is determined mathematically for  ,0t , and physically for 

21,0  tt . Of course, only that second interval of time variability will be taken into account, 

because that adequate, real description of the reality is of importance. 

Because 2110   tt , the time constant   determined by formulae (14) and (26) is similar 

and equal 

 

                                                                  
2ln




T

                                                              (27) 

 

That means it is directly proportional to the quarter-period T  of pendulum vibrations, with 

the coefficient of proportionality being the inverse of ln 2, that is 2ln:1 . 

 

 

3.  KINETIC DERIVATIVES OF THE PENDULUM WEIGHT MAGNITUDE 

 

It is worth explaining here the difference between kinetics and kinematics. Kinetics, as 

it is explained in the literature [4,8], characterizes the body motion without regarding its mass. 

It is about the motion widely understood, both variable, and uniform motion. Kinematics 

takes into account the body mass but refers only to the uniform motion. Dynamics, as it 

results is connected with the variable motion of the body of a determined mass. 

The kinetics problem of the simple mathematical pendulum is very important; it 

presents the starting point to more general considerations connected with the dynamics and 

energy of the device. It is worth describing more deeply all these phenomena – not only for 

the cognitive reasons, but also for utilitarian and practical ones. 

The first derivative magnitude is the velocity, here the angular velocity ω of pendulum 

weight. It is the first derivative of angular path length φ against time t. Therefore, for the 

accelerated motion, with the first kinematic magnitude (path length) described by the formula 

(12), the angular velocity ω is expressed by dependence 
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                                         






































tt

t

ee
dt

ed

dt

d
0

1







                                    (28) 

 

where 0  is the initial angular velocity. It has been described above, by formula (4). The 

formula (28) defines that velocity by analogy. 

Next a kinetic magnitude, that is the angular acceleration ε, being the first derivative of 

the angular velocity ω, and the second derivative of the path length φ, is expressed for this 

motion (accelerated motion) by the following dependence 

 

                                          



 







ttt

eee
dt

d

dt

d
02

0

2

2




                                       (29) 

 

For a complete set of moments, that is for the terminal values of the time of accelerated 

motion, that is 0t  and 2ln Tt , the angular velocity ω equals respectively 

 

                                                                    0                                                                  (30) 

 

and 

 

                                                               01 2                                                             (31) 

 

and acceleration 

 

                                                                     0                                                                  (32) 

 

and 

 

                                                                01 2                                                              (33) 

 

For a retarded motion, for which the path length is described by the formula (24), the 

particular derivative kinetic magnitudes are expressed by the formulae 

 

                            
















































ttt

t

eee
dt

ed

dt

d
102

2
12







                          (34) 

 

                                





















tttt

eeee
dt

d

dt

d
102

1

2

2

2
22




                           (35) 

 

Corresponding with the terminal values of time period of a retarded motion, that is for 

0t  and 2ln Tt , the angular velocity  equals, respectively 

 



International Letters of Chemistry, Physics and Astronomy 9(2) (2013) 186-201                                                                                                                          

 

196 

                                                                    1                                                                  (36) 

 

and 

 

                                                          0
1

2
2




                                                        (37) 

 

and acceleration 

 

                                                                     1                                                                  (38) 

 

and 

 

                                                             0
1

2
2




                                                          (39) 

 

All these magnitudes may be naturally connected with the length l of pendulum, by 

obtaining them for motion in the direction tangent peripheral to the weight track. Thus the 

equivalents of formulae  (28-39) will be the following formulae: 

 

                                                    








tt

lelelv 0


                                                (40) 

 

                                                 



 







ttt

lelelea 02

0 


                                              (41) 

 

                                                           

t

levv 0

0                                                            (42) 

 

                                                          

t

levv 0

1 2                                                          (43) 

 

                                                              laa  0

0                                                            (44) 

 

                                                        llaa  01

1 2                                                     (45) 

 

                                             















ttt

lelelev 102
2




                                          (46) 

 

                                    





















tttt

lelelelea 102

0 2
22




                                 (47) 

 

                                                               lvv  1

1                                                           (48) 
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                                                   lllvv  0
1

2

2

2



                                                (49) 

 

                                                              laa  1

1                                                             (50) 

 

                                                    lllaa  0
1

2

2

2



                                                 (51) 

 

In Fig. 4a, a graphical interpretation of the velocity dependence v  of the pendulum 

weight on time, for two first quarter-periods, is presented. Fig. 4b illustrates the course of 

dependence of acceleration a  for the same quarter-periods. That cycle of changes (both of 

the velocity and acceleration) will be repeated without changing its configuration. 

 
Fig. 4. Graphical interpretation of dependence of the velocity (a) and acceleration (b) of pendulum 

weight on time for the first two quarter-periods. 
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It is worth noticing that the acceleration a  in the central point (Fig. 4b), that is 1

a , is 

equal to the terrestrial acceleration g, that is ga 1

 . That equality may be used to derive the 

formula on the vibration period T of pendulum. Considering the formula (45), one obtains 

 

                                                             lag  0

1 2                                                           (52) 

 

and further, by regarding (41), one obtains 

 

                                                                  lg
2

2





                                                            (53) 

 

After substituting the formula on  , that is (27), to (53) one obtains 

 

                                                            
 

l
T

g
2

2
2ln2








                                                      (54) 

 

and then – knowing that 4:TT 
, according to formula (16) – one obtains 

 

                                                            
 

l
T

g 


2

2

8

2ln 
                                                       (55) 

 

from which  

 

                                                             
g

l
T

22

2ln 



                                                        (56) 

 

Now a normal acceleration na  should be taken into consideration. That acceleration is 

expressed by the following, known formula of definition  

 

                                                  
 

l
l

l

l

v
an 


 2

222


                                              (57) 

 

All three accelerations (tangent a , normal na , and terrestrial g) have been presented 

graphically in Fig. 5. As can be seen, in the terminal position of the analyzed pendulum 

between particular accelerations the following relations occur, 00

naga  . In the intermediate 

position, the same relations  naga   will take place, whereas in the central position, 

gaan  11

 . 
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Fig. 5. Accelerations (static aτ, normal an, and terrestrial g) in the extreme and  

central position of pendulum. 

 

 

 

4.  CONCLUSIONS 
 

Novel theory of a simple mathematical pendulum varies considerably from the existent 

theory of motion of that kind of device. The new adequate theory, in opposition to the existing 

one, describes a real pendulum motion; it is the motion in vertical plane. In that theory the 

quantum non-continuous character of the variable motion of pendulum weight is clearly 

indicated. Very carefully in detail are described in the theory the terminal turning points of the 

weight path with the exact presentation of its specific behaviours. Especially important is the 

description of its transition from an instantaneous terminal equilibrium to the unbalance, 

being the condition for beginning of the free variable motion. 

The elaborated theory of mathematical pendulum clearly indicates, occurring in the 

reality, a big differentiation of the weight motion. The variable motion reveals different 

characteristics between the neighbouring space-times in consecutive quarter-periods. At the 

beginning, from the moment of pendulum setting in motion (setting it in a free motion) the 

accelerated free variable motion takes place, then – a retarded motion of that type, and further 

again the accelerated motion, etc. Different descriptions of the pendulum weight path lengths 
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correspond with them along with the descriptions of derivatives of kinetic magnitudes. It is 

worth noting that the kinetics has an open character; one may determine next kinetic 

magnitudes, such as impulse and further, not named nor used magnitudes as yet. 

It is interesting that one of the recent other works considers “rethinking Newton’s 

Principia” in Galilean space-time [16]. One would say: at last! Though it refers to the 

universe, the necessity to “rethink” many existent theories is of importance. This work was 

focused mainly onto the mathematical pendulum kinetics, with the dynamics considered in 

peculiar points only, not presenting analytically the characteristics of particular components 

of forces. That was resulting from the need/necessity to explain the pendulum behaviours just 

in these particular points on the path of its variable motion. The energy and dynamics 

problems have not been considered due to the frameworks of the work. They are to be 

presented in the following elaborations. 
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