PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiocarbon and lead-210 age-depth model and trace elements concentration in the Wolbrom fen (S Poland)

Identyfikatory
Warianty tytułu
Konferencja
Conference Proceedings of the 12th International Conference “Methods of Absolute Chronology” May 11-13th, 2016, Gliwice-Paniówki, Poland
Języki publikacji
EN
Abstrakty
EN
A one-meter long peat core was taken from the peatland in Wolbrom (Silesian-Cracovian Upland, southern Poland). The analysis of the botanical composition showed that Wolbrom is a fen. Vegetation species such as Carex rostrata and Phragmites australis have been found. An age-depth model was constructed using 12 conventional radiocarbon dates and 13 lead-210 dates from the upper part of the deposit. In this work, the results of radiocarbon dating are presented. According to the model, we can estimate the age of the fen. The oldest part comes from a depth of 1.05 meter and its conventional age is 5940 ± 95 BP (modelled date 5000–4790 BC, 68.2% probability interval). The accumulation rate varies between approximately 0.53 mm·yr–1 and 6.48 mm·yr–1 . The core has been also tested for the presence of trace elements (Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) using ICP-OES. There are considerable variations in the concentrations of the tested metals – in many cases the concentration starts to rise at about 40 cm and may be connected with the human activity. This depth corresponds to the modelled age intervals 355–300 BC (17.4%) and 205–45 BC (50.7%).
Wydawca
Czasopismo
Rocznik
Strony
40--48
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Silesian University of Technology, Institute of Physics - Centre for Science and Education, Konarskiego 22B, 44-100 Gliwice, Poland
autor
  • “Ekopomiar” Ecological Laboratory, F. Chopina 26A/4, 44-100 Gliwice, Poland
autor
  • Institute of Environmental Engineering, Polish Academy of Sciences, M. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
  • Silesian University of Technology, Institute of Physics - Centre for Science and Education, Konarskiego 22B, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Physics - Centre for Science and Education, Konarskiego 22B, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Physics - Centre for Science and Education, Konarskiego 22B, 44-100 Gliwice, Poland
autor
  • Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow, Poland
Bibliografia
  • 1. Ali AA, Ghaleb B, Garneau M, Asnong H and Loisel J, 2008. Recent peat accumulation rates in minerothophic fens of the Bay James region, Eastern Canada, inferred by 210Pb and 137Cs radiometric techniques. Applied Radiation and Isotopes 66(10): 1350–1358, DOI 10.1016/j.apradiso.2008.02.091.
  • 2. Bojakowska I and Lech D, 2008. Zróżnicowanie zawartości pierwiastków śladowych w torfach występujących na obszarze Polski (The diversity of trace elements content in peat occuring in Poland). Zeszyty Naukowe Politechniki Śląskiej, Górnictwo: 285: 31–41 (in Polish).
  • 3. Boyle JF, 2001. Inorganic geochemical methods in palaeolimnology. In: Last WM, Smol JP, eds., Tracking Environmental Change Using Lake Sediments 2: Physical and Geochemical Methods: 83–141.
  • 4. Bronk Ramsey C and Lee S, 2013. Recent and Planned Developments of the Program OxCal. Radiocarbon 55(2–3): 720–730, DOI: 10.2458/azu_js_rc.55.16215.
  • 5. Chróst L, 2013. Ołowiowy ślad Wiślan odczytany z torfowisk obszaru kruszconośnego śląsko-małopolskiego (Lead trace of Vistulans tribe read from peat bogs of Silesian-Malopolska, metalliferous zone). In: Boroń P, ed.: Argenti fossores at alii. Znaczenie gospodarcze wschodniej części Górnego Śląska i zachodnich krańców Małopolski w późnej fazie wczesnego średniowiecza [X-XII wiek] (The economic importance of the eastern part of Upper Silesia and western ends of Malopolska in the late phase of the early Middle Ages [X-XII century]), Chronicon, Wrocław: 175–186, ISBN 978- 83-935760-6-7 (in Polish).
  • 6. De Vleeschouwer F, Gérard L, Goormaghtigh C, Mattielli N, Le Roux G and Fagel N, 2007. Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millennia: Human impact on a regional to global scale. The Science of the Total Environment 377: 282–295.
  • 7. Godzik B and Woch MW, 2015. History of mining in the Olkusz region. In: Godzik B, ed., Natural and historical values of the Olkusz Ore-Bearing region. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków: 29–36.
  • 8. Ilnicki P, 2002. Torfowiska i torf (Peatlands and peat). Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego, Poznań, ISBN 83-7160-243-X (in Polish).
  • 9. Kac NJ, Kac SW and Skobiejewa E, 1977. Atlas rastitielnych ostatkow w torfach (Atlas of plant residues in peat). Nedra, Moskwa (in Russian).
  • 10. Karczewska A and Kabała C, 2008. Metodyka analiz laboratoryjnych gleb i roślin (Methods of laboratory analysis of soils and plants). Instytut Gleboznawstwa i Ochrony Środowiska Rolniczego, Akademia Rolnicza, Wrocław (in Polish).
  • 11. Kondracki J, 2013. Geografia regionalna Polski (Regional geography of Poland). Wydawnictwo Naukowe PWN, Warszawa, ISBN 978- 83-01-16022-7 (in Polish).
  • 12. Kruczała A, ed., 2000. Atlas klimatu województwa śląskiego (Climate Atlas of the Silesia Province). Instytut Meteorologii i Gospodarki Wodnej, Katowice: 34, 57, 74, 83-85862-64-1 (in Polish).
  • 13. Latałowa M, 1976. Pollen diagram of the Late-glacial and Holocene peat deposits from Wolbrom (S Poland). Acta Palaeobotanica 17 (1): 55–80 (in Polish). 14. Latałowa M and Nalepka D, 1987. A study of the Late-glacial and Holocene vegetational history of the Wolbrom area (SilesianCracovian Upland). Acta Palaeobotanica 27 (1): 75–115.
  • 15. Lis J and Pasieczna A, 1995. Geochemical atlas of Upper Silesia 1:200 000. Państwowy Instytut Geologiczny, Warszawa.
  • 16. Maciak F and Liwski S, 1996. Ćwiczenia z torfoznawstwa (Exercises in peat science). Wydawnictwo SGGW, Warszawa. ISBN: 83-00- 02968-0 (in Polish).
  • 17. MacKenzie AB, Farmer JG and Sugden CL, 1997. Isotopic evidence of the relative retention and mobility of lead and radiocaesium in Scottish ombrotrophic peats. Science of the Total Environment 203: 115–127, DOI 10.1016/S0048-9697(97)00139-3.
  • 18. Magiera T, Mendakiewicz M, Szuszkiewicz M, Jabłońska M and Chróst L, 2016. Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland. Science of the Total Environment 566–567: 536–551, DOI 10.1016/j.scitotenv.2016.05.126.
  • 19. Maksimow A, 1965. Torf i jego użytkowanie w rolnictwie (Peat and its use in agriculture). PWRiL, Warszawa (in Polish).
  • 20. Martínez Cortizas A, 2016. Early atmospheric metal pollution provides evidence for Chalcolithic/Bronze Age mining and metallurgy in Southwestern Europe. Science of the Total Environment 545–546: 398–406, DOI 10.1016/j.scitotenv.2015.12.078.
  • 21. Myślińska E, 2001. Grunty organiczne i laboratoryjne metody ich badania (Organic soils and the laboratory test methods). Wydawnictwo Naukowe PWN, Warszawa. ISBN: 8301134178 (in Polish).
  • 22. Nieć M, 1997. Złoża rud cynku i ołowiu (Deposits of zinc and lead ores). In: Kicki J, ed., Surowce mineralne Polski. Surowce metaliczne: cynk, ołów (Mineral resources of Poland. Metallic resources: zinc, lead). Wydawnictwo Centrum PPGSMiE PAN, Kraków: 9–46. ISBN 83-86286-83-1 (in Polish).
  • 23. Nriagu JO, 1996. A history of global metal pollution. Science 272(5259): 223, DOI 10.1126/science.272.5259.223.
  • 24. Obidowicz A, 1976. Genesis and development of the peat-bog at Wolbrom (S Poland). Acta Palaeobotanica 17(1): 45–54 (in Polish).
  • 25. Pawlyta J, Pazdur A, Rakowski A, Miller BF and Harkness DD, 1998. Commissioning of QuantulusTM liquid scintillation beta spectrometer for measuring 14C and 3 H at natural abundance levels. Radiocarbon 40(1): 201–209.
  • 26. Pawłowski D, Kowalewski G, Milecka K, Płóciennik M, Woszczyk M, Zieliński T, Okupny D, Włodarski W and Forysiak J, 2015. A reconstruction of the palaeohydrological conditions of a flood-plain: A multi-proxy study from the Grabia River valley mire, central Poland. Boreas 44(3): 543–562, DOI 10.1111/bor.12115.
  • 27. Pawłowski D, Borówka RK, Kowalewski GA, Luoto TP, Milecka K, Nevalainen L, Okupny D, Tomkowiak J and Zieliński T, 2016. Late Weichselian and Holocene record of the paleoenvironmental changes in a small river valley in Central Poland. Quaternary Science Reviews 135: 24–40, DOI 10.1016/j.quascirev.2016.01.005.
  • 28. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, SM Turney C and van der Plicht J, 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0- 50,000 years cal BP, Radiocarbon 55(4): 1869–1887.
  • 29. Shotyk W, 1996. Natural and anthropogenic enrichments of As, Cu, Pb, Sb and Zn in ombrotrophic versus minerotrophic peat bog profiles, Jura Mountains, Switzerland. Water, Air and Soil Pollution 90: 375–405, DOI 10.1007/BF00282657.
  • 30. Sikorski J and Bluszcz A, 2003. Testing applicability of 210Pb method to date sediments of human–made lake Kozłowa Góra. Geochronometria 22: 63–66.
  • 31. Sikorski J and Bluszcz A, 2008. Application of α and γ spectrometry in the 210Pb method to model sedimentation in artificial retention reservoir. Geochronometria 31: 65–75, DOI 10.2478/v10003-008- 0019-4.
  • 32. Skripkin V and Kovaliukh N, 1998. Recent developments in the procedures used at the SSCER Laboratory for the routine preparation of lithium carbide. Radiocarbon 40(1): 211–214.
  • 33. Śmieja-Król B, Janeczek J, Bauerek A and Thorseth IH, 2015. The role of authigenic sulfides in immobilization of potentially toxic metals in the Bagno Bory wetland, southern Poland. Environmental Science and Pollution Research 22(20): 15495–15505, DOI 10.1007/s11356-015-4728-8.
  • 34. Theodórsson P, 2005. A simple, extremely stable single-tube liquid scintillation system for radiocarbon dating. Radiocarbon 47: 89– 97, DOI 10.2458/azu_js_rc.47.2803.
  • 35. Tobolski K, 2000. Przewodnik do oznaczania torfów i osadów jeziornych (Guidebook for determination of peat and lake sediments). Wydawnictwo Naukowe PWN, Warszawa. ISBN 83-01- 13215-9 (in Polish).
  • 36. Tołpa S, Jasnowski M and Pałczyński A, 1967. System der genetischen Klassifizierung der Torfe Mitteln-Europas. (System of the genetic classification of the peat in Central Europe). Zesz. Probl. Post. Nauk Rol. 76: 9–99 (in German).
  • 37. Trela J, 1928. Torfowisko w Wolbromiu (wyniki analizy pyłkowej) (Peatland in Wolbrom /the results of pollen analysis/). Acta Soc. Bot. Pol. 5(3): 337–351.
  • 38. Tudyka K, Bluszcz A, Kozłowska B, Pawlyta J and Michczyński A, 2015. Low level 14C measurements in freshly prepared benzene samples with simultaneous 214Bi/214Po pairs counting for routine 222Rn contamination correction. Radiation Measurements 74: 6– 11, DOI 10.1016/j.radmeas.2015.01.010.
  • 39. Tudyka K and Pazdur A, 2012. 14C Dating with the ICELS Liquid Scintillation Counting System Using Fixed-Energy Balance Counting Window Method. Radiocarbon 54: 267–273, DOI 10.2458/azu_js_rc.v54i2.15832.
  • 40. Vile MA, Kelman Wieder R and Novák M, 1999. Mobility of Pb in Sphagnum-derived peat. Biogeochemistry 45: 35–52, DOI 10.1007/BF00992872.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7ed47bf-a428-4f3d-8729-429ee0fd7bcb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.