PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Performance Comparison of Various Artificial Intelligence Approaches for Estimation of Sediment of River Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sediment is a universal issue that is generated in the river catchment and affects the river flow, reservoir capacity, hydropower generation and dam structure. This paper aims to present the result of experimentation in sediment load estimation using various machine learning algorithms as a powerful AI approach. The data was collected from eight locations in upstream area of Ringlet reservoir catchment. The input variables are discharge and suspended solid. It was found that there is strong correlation between sediment and suspended solid with correlation coefficient of R = 0.9 . The developed ML model successfully estimated the sediment load with competitive results from ANN, Decision Tree, AdaBoost and SVM. The best result was produced by SVM (v-SVM version) where very low RMSE was generated for both training and testing dataset despite its more complicated hyperparameters setup. The results also show a promising application of machine learning for future prediction in hydro-informatic systems.
Rocznik
Strony
20--27
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Institute of Energy Infrastructure, Universiti Tenaga Nasional (UNITEN), 43000 Kajang, Selangor, Malaysia
  • Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000 Kajang, Selangor, Malaysia
  • Faculty of Engineering, Technology and Built Environment, UCSI University, Jalan Puncak Menara Gading, Taman Connaught, Kuala Lumpur 56000, Malaysia
  • Asset Management Department, Generation Division, Tenaga Nasional Berhad, 59200 Kuala Lumpur, Malaysia
Bibliografia
  • 1. Abdulkadir, T.S., Mustafa, M.R., Yusof, K.W., & Hashim, A.M. (2016). Evaluation of rainfall-runoff erosivity factor for Cameron Highlands, Pahang, Malaysia. Journal of Ecological Engineering, 17(3).
  • 2. Abrahart, R., See, L., & Solomatine, D. (2008). Practical Hydroinformatics (1st Ed.). Berlin: Springer.
  • 3. Afan, H.A., El-Shafie, A., Yaseen, Z.M., Hameed, M.M., Wan Mohtar, W.H.M., & Hussain, A. (2014). ANN Based Sediment Prediction Model Utilizing Different Input Scenarios. Water Resources Management, 29(4), 1231–1245. https://doi.org/10.1007/s11269–014–0870–1
  • 4. Bahagian Sumber Air dan Hidrology, JPS Malaysia
  • 5. Cigizoglu, H. (2004). Estimation And Forecasting of Daily Suspended Sediment Data by Multi-Layer Perceptrons. Advances in Water Resources, 27(2), 185–195. doi: 10.1016/j.advwatres.2003.10.003
  • 6. Demirci, M., Ülneş, F., Saydemir, S. (2015). Suspended sediment estimation using an artificial intelligence approach. In: Sediment matters. Eds. P. Heininger, J. Cullmann. Springer International Publishing p. 83–95.
  • 7. Faudzi, S.M.M., Abustan, I., Kadir, M.A.A., Khairi, M., Wahab, A., & Razak, M.F.A. (2019). Twodimensional simulation of Sultan Abu Bakar Dam release using hec-ras. International Journal, 16(58), 124–131.
  • 8. Gasim, M.B., Ismail Sahid, E.T., Pereira, J.J., Mokhtar, M., & Abdullah, M.P. (2009a). Integrated water resource management and pollution sources in Cameron Highlands, Pahang, Malaysia. AmericanEurasian J Agric Environ Sci, 5, 725–732.
  • 9. Gasim, M.B., Surif, S., Toriman, M.E., Rahim, S.A., Elfithri, R., & Lun, P.I. (2009b). Land-use change and climate-change patterns of the Cameron Highlands, Pahang, Malaysia. The Arab World Geographer, 12(1–2), 51–61.
  • 10. Gericke, A., & Venohr, M. (2012). Improving the estimation of erosion-related suspended solid yields in mountainous, non-alpine river catchments. Environmental Modelling & Software, 37, 30–40. doi: 10.1016/j.envsoft.2012.04.008.
  • 11. Hayder, G., Solihin, M.I., & Mustafa, H.M. (2020). Modelling of River Flow Using Particle Swarm Optimized Cascade-Forward Neural Networks: A Case Study of Kelantan River in Malaysia. Applied Sciences, 10(23), 8670.
  • 12. How Jin Aik, D., Ismail, M.H., & Muharam, F.M. (2020). Land Use/Land Cover Changes and the Relationship with Land Surface Temperature Using Landsat and MODIS Imageries in Cameron Highlands, Malaysia. Land, 9(10), 372. http://h2o.water.gov.my/v2/fail/rhnc/index.html
  • 13. Jamil, N.R., Ruslan, M.S., Toriman, M.E., Idris, M., & Razad, A.A. (2014). Impact of Landuse on seasonal water quality at highland lake: A Case Study of Ringlet Lake, Cameron Highlands, Pahang. In From Sources to Solution (pp. 409–413). Springer, Singapore.
  • 14. Jie-Lun, C., & Yu-Shiue, T. (2011). Suspended sediment load estimate using support vector machines in Kaoping river basin. In International Conference on Consumer Electronics, Communications and Networks (CECNet) (pp. 1750–1753). XianNing, China: IEEE.
  • 15. Khan, M.Y.A., Tian, F., Hasan, F., & Chakrapani, G. J. (2019). Artificial neural network simulation for prediction of suspended sediment concentration in the River Ramganga, Ganges Basin, India. International journal of sediment research, 34(2), 95–107.
  • 16. Khanchoul K., Tourki M., Le Bissonnais Y. (2015). Assessment of the artificial neural networks to geomorphic modelling of sediment yield for ungauged catchments, Algeria. Journal of Urban and Environmental Engineering (JUEE), 8(2), pp. 175–185.
  • 17. Kisi, O. (2010). River Suspended Sediment Concentration Modelling using a Neural Differential Evolution Approach, Journal of Hydrology, 389(1–2), 227–235.
  • 18. Kisi, O., Haktanir, T, Ardiclioglu, M., Ozturk, O., Yalcin, E., Uludag, S., (2009). Adaptive Neurofuzzy Computing Technique for Suspended Sediment Estimation, Advances In Engineering Software, 40(6), 438–444.
  • 19. Kun, C.F., & Saman, D.H. (2004). Cameron Highlands/Batang Padang Hydroelectric Scheme: dam surveillance and performance review. New Developments in Dam Engineering. London, 263–271.
  • 20. Luis, J., Sidek, L. M., Desa, M.N.B.M., & Julien, P. Y. (2013). Hydropower reservoir for flood control: a case study on Ringlet Reservoir, Cameron Highlands, Malaysia. Journal of flood engineering, 4(1), 87–102.
  • 21. Luis, J., Sidek, L.M., Desa, M.N.M., & Julien, P.Y. (2012). Challenge in running hydropower as source of clean energy: ringlet reservoir, cameron highlands case study. In Proceedings National Graduate Conference.
  • 22. Machine Learning 101 – Medium. (n.d.). Retrieved November 11, 2019, from https://medium.com/machine-learning-101
  • 23. Maturidi, A.M.A.M., Kasim, N., Taib, K.A., Azahar, W.N.A.W., & Tajuddin, H.A. (2020). Empirically Based Rainfall Threshold for Landslides Occurrence in Cameron Highlands, Malaysia.
  • 24. Mustafa, M.R., Isa, M.H. (2014). Comparative study of MLP and RBF neural networks for estimation of suspended sediments in Pari River, Perak. Research Journal of Applied Sciences, Engineering and Technology. 7(18), pp. 3837–3841.
  • 25. Nivesh, S., & Kumar, P. (2017). Modelling river suspended sediment load using artificial neural network and multiple linear regression: Vamsadhara River Basin, India. ~ 337 ~ International Journal of Chemical Studies, 5(5), 337–344.
  • 26. Olyaie, E., Banejad, H., Chau, K.W., & Melesse, A. M. (2015). A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States. Environmental Monitoring and Assessment, 187(4). https://doi.org/10.1007/s10661–015–4381–1
  • 27. Orange – Data Mining Fruitful & Fun. (n.d.). Retrieved March 12, 2019, from https://orange.biolab.si/
  • 28. Pradhan, B., & Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1), 13–30.
  • 29. Razad, A.A., Samsudin, S.H., Setu, A., Abbas, N.A., Sidek, L.M., & Basri, H. (2020a, July). Investigating the Impact of Land Use Change on Sediment Yield for Hydropower Reservoirs through GIS Application. In IOP Conference Series: Earth and Environmental Science (Vol. 540, No. 1, p. 012037). IOP Publishing.
  • 30. Razad, A.A., Sidek, L.M., Jung, K., Rahman, N.F., & Shamsuddin, S.H. (2020b). Prediction of reservoir sedimentation using Soil Water Assessment Tool (SWAT) towards development of sustainable catchment management. In IOP Conference Series: Materials Science and Engineering (Vol. 736, No. 2, p. 022041). IOP Publishing.
  • 31. Razad, A.Z.A., Sidek, L.M., Jung, K., & Basri, H. (2018). Reservoir inflow simulation using MIKE NAM rainfall-runoff model: Case study of cameron highlands. J. Eng. Sci. Technol, 13, 4206–4225.
  • 32. Razali, A., Syed Ismail, S.N., Awang, S., Praveena, S.M., & Zainal Abidin, E. (2020a). Distribution and source analysis of bioavailable metals in highland river sediment. Environmental Forensics, 1–14
  • 33. Razali, A., Syed Ismail, S.N., Awang, S., Praveena, S.M., & Zainal Abidin, E. (2020b). The impact of seasonal change on river water quality and dissolved metals in mountainous agricultural areas and risk to human health. Environmental Forensics, 21(2), 195–211.
  • 34. Tayebiyan, A., Ali, T.A. M., Ghazali, A.H., & Malek, M.A. (2014). Future Consequences of Global Warming on Temperature and Precipitation at Ringlet Reservoir, Malaysia. In Int’l Conference on Advances in Environment, Agriculture & Medical Sciences (ICAEAM’14), Kuala Lumpur (pp. 16–17).
  • 35. Tayebiyan, A., Mohammad, T. A., Ghazali, A.H., & Mashohor, S. (2016). Artificial neural network for modelling Rainfall-Runoff. Pertanika J Sci Technol, 24(2), 319–30.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7e5e343-5c28-4584-9913-bac1238a6a0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.