Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The design of a methodology for the effective scene understanding systems is one of the main goals of the researchers in the analysis of video surveillance. The objects in the scene have to be identified. Hence, it is necessary to detect the parts belonging to the background. In the article we introduce the base algorithms, which enable us to realization of scenarios. We briefly describe base algorithms (object detection, object localization, recognition of humans, movement detection and configuration of scene) used in three selected scenarios: violation of protected zones, abandoned objects and vandalism (graffiti). These scenarios were tested on several films, obtained from Internet and made by participants of project SIMPOZ. The results of our experiments are presented. The basic algorithms for detecting and locating objects are very quickly, but movement detection ("optical flow") and recognition of humans algorithms work longer.
Wydawca
Czasopismo
Rocznik
Tom
Strony
231--240
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Department of Automatics and Biomedical Engineering
autor
- AGH University of Science and Technology, Department of Automatics and Biomedical Engineering
autor
- AGH University of Science and Technology, Department of Automatics and Biomedical Engineering
Bibliografia
- [1] R. Tadeusiewicz, Introduction to Intelligent Systems, chapter no 1 in book: Wilamowski B.M., Irvin J.D. (Eds.): The Industrial Electronics Handbook - Intelligent Systems, CRC Press, Boca Raton, pp. 1-1 - 1-12, 2011
- [2] F. Brémond, M. Thonnat, M. Zuniga, Video understanding framework for automatic behavior recognition, Behavior Research Methods, Vol. 38, No. 3, pp. 416-426, 2006
- [3] N.M. Oliver, B. Rosario, A.P. Pentland, A Bayesian Computer Vision System for Modeling Human Interactions, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 8, 2000
- [4] M. Ghallab, On chronicles: Representation, On-line recognition and learning. In Proceedings of the 5th International Conference on Principles of Knowledge Representation and Reasoning, Cambridge, Massachusetts, USA: Morgan Kaufmann, pp. 597-606, 1996
- [5] M. Thonnat, Semantic Activity Recognition, 18th European Conference on Artificial Intelligence ECAI 2008, pp. 3-7, 2008
- [6] T. Geerinck, V. Enescu, I. Ravyse, H. Sahli, Rule- Based Video Interpretation Framework: Application to Automated Surveillance, Proceedings of the Fifth International Conference on Image and Graphics ICIG, China, 2009
- [7] K. Jensen, L.M. Kristensen, L.Wells, Coloured Petri Nets and CPN Tools for Modelling and Validation of Concurrent Systems, International Journal on Software Tools for Technology Transfer, Vol. 9, pp.213-254, 2007
- [8] E. Bermejo, O. Déniz, G. Bueno, Security System Based on Suspicious Behavior Detection, RAMA DE ESTUDIATES DEL IEEE DE BARCELONA, No. 25, 2010
- [9] Bosch Intelligent Video Analysis (IVA), www. boschsecurity.us, accessed 1.VI.2012
- [10] i-LIDS - Imagery Library for Intelligent Detection Systems, www.ilids.co.uk, accessed 1.VI.2012
- [11] Minnesota, University of, Department of Computer Science and Engineering, http://mha.cs.umn.edu/proj_events.shtml, accessed 1.VI.2012
- [12] J.L. Shih, Y.N. Chen, Y.K.C. Kai-Chiun, C.C. Han, Illegal Entrant Detection at a Restricted Area in Open Spaces Using Color Features, Journal of Information Science and Engineering, Vol. 25, pp. 1575-1592, 2009
- [13] V.-T. Vu, F. Bremond, M. Thonnat, Automatic video interpretation: a novel algorithm for temporal scenario recognition, In Proceedings of the 18th International Joint Conference on Artificial intelligence (IJCAI’03), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 1295-1300, 2003
- [14] ADVISOR project, http://www-sop.inria.fr/orion/ADVISOR, accessed 1.VI.2012
- [15] T. Kryjak, Analiza i testowanie algorytmów generacji tła na potrzeby systemu monitoringu przestrzeni publicznej, Automatyka, Vol. 15, No. 3, pp. 177-196, 2011
- [16] J. Przybyło, M. Komorkiewicz, Pedestrian detection and analysis with scale-space and distance transform, In this issue, 2012
- [17] Z. Mikrut, K. Pałczynski, Segmentacja sekwencji obrazów z wideodetektora na podstawie przepływu optycznego, Automatyka, Vol. 7, No. 3, pp. 371-384, 2003
- [18] A. Głowacz, Z. Mikrut, P. Pawlik, Video Detection Algorithm Using an Optical Flow Calculation Method, In A. Dziech and A. Czyżewski (Eds.): MCSS 2012, CCIS 287, pp. 118-129, Springer- Verlag Berlin Heidelberg 2012
- [19] P. Szymczyk, M. Szymczyk, Scene configurator, In this issue, 2012
- [20] ITEA CANDELA project: Content Analysis and Network Delivery Architectures, 2005, http://www.multitel.be/~va/candela/accessed 1.VI.2012
- [21] PETS: Ninth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance - PETS 2006 Benchmark Data, http://www.cvg.rdg.ac.uk/PETS2006/data.html, accessed 1.VI.2012
- [22] T. Kryjak, Shadow removal for greyscale video sequences, In this issue, 2012
Uwagi
EN
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7e17263-b98e-49bc-8720-dedf9cb485da