PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analysis of a cylindrical cyclone separator used in aircraft turbine engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cyclone separators are commonly used in the oil system of aircraft gas turbine engines to separate air from oil. The major advantages of cyclone separators are simple structure and high reliability that eliminate the need for frequent inspections. The efficiency of a cyclone separator has a decisive impact on oil quality, which directly affects the efficiency of the oil system. The new generation of engines requires more compact separator designs to reduce weight and minimize project costs while maintaining (and often increasing) an engine’s efficiency and reliability. To meet these requirements and optimize the separator structure, the flow of the air-oil mixture has to be modeled in the design process. The aim of this study was to present a numerical simulation of an aircraft turbine separator with the use of the volume of the fluid model.
Rocznik
Tom
Strony
131--142
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • Avio Polska sp. z o.o., ul. Grażyńskiego 141, 43-300 Bielsko-Biała
  • Department of Power Engineering and Turbomachinery, Silesian University of Technology
  • Avio Polska sp. z o.o., Bielsko-Biała
Bibliografia
  • Arpandi I., Joshi A.R., Shoham O., Shirazi S., Kouba G.E. 1996. Hydrodynamics of two-phase flow in gas-liquid cylindrical cyclone separators. Society of Petroleum Engineers, 1: 427-436, doi: 10.2118/30683-PA.
  • Chang P., Hu T., Wang L., Chang S, Wang T., Wang Y. 2016. Numerical simulation on structure optimization of liquid-gas cylindrical cyclone separator. International Journal of Chemical Engineering, 3187631, doi: 10.1155/2016/3187631.
  • Delgadillo J.A., Rajamani R.K. 2005. A comparative study of three turbulence-closure models for the hydrocyclone problem. International Journal of Mineral Processing, 77(1): 217-230, doi: 10.1016/j.minpro.2005.06.007.
  • Eastwick C.N, Simmons K., Wang Y. 2006. Study of aero-engine oil-air separators. Journal of Power and Energy, 220(7): 707-717, doi.org/10.1243/09576509JPE116
  • Erdal F.M., Shirazi S.A., Mantilla I., Shoham O. 1998. CFD Study of bubble carry-under in gas-liquid cylindrical cyclone separators. Society of Petroleum Engineers, SPE-49309-M, doi: 10.2118/49309-MS.
  • Escue A., Cui J. 2010. Comparison of turbulence models in simulating swirling pipe flows. Applied Mathematical Modelling, 34(10): 2840-2849, doi: 10.1016/j.apm.2009.12.018.
  • Filippone A., Bojdo N. 2010. Turboshaft engine air particle separation. Progress in Aerospace Sciences, 46(5-6): 224, 245, doi.org/10.1016/j.paerosci.2010.02.001.
  • Gao X., Zhao Y., Yang X., Chang Y., Peng X. 2012. The research on the performance of oil-gas cyclone separators in oil injected compressor systems with considering the collision and breakup of oil droplets. International Compressor Engineering Conference, p. 2119.
  • Hirt C.W., Nichols B.D. 1981. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 39: 201-255, doi: 10.1016/0021-9991(81)90145-5.
  • Kristoffersen T., Holden C., Skogestad S., Egeland O. 2017. Control-Oriented Modelling of Gas-Liquid Cylindrical Cyclones. American Control Conference, p. 2829-2836, doi: 10.23919/ACC.2017.7963380.
  • Ubbink O. 1997. Numerical prediction of two fluid systems with sharp interfaces (Phd). Imperial College London, hdl.handle.net/10044/1/8604.
  • Rudolf P. 2013. Simulation of multiphase flow in hydrocyclone. EPJ Web of Conferences, 45: 01101, doi: 10.1051/epjconf/20134501101.
  • Szwarc T., Wróblewski W., Borzęcki T. 2019. Numerical simulation of cyclone used in aircraft turbine engine. Modelling in Engineering, 40: 74.
  • Wang J., Mao Y., Liu M. 2010. Numerical simulation of strongly swirling flow in cyclone separator by using an advanced RNG k-ε model. Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 26: 8-13.
  • Wang L., Gao X., Feng J.M., Peng X.Y. 2015. Research on the two-phase flow and separation mechanism in the oil–gas cyclone separator. IOP Conf. Series: Materials Science and Engineering, 90: 012075, doi: 10.1088/1757-899X/90/1/012075.
  • Yakhot V., Orszag S.A. 1986. Renormalization Group Analysis of Turbulence. I. Basic Theory. Journal of Scientific Computing, 1(1), doi: 10.1007/BF01061452.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7ddf78a-867d-43b6-bf7b-2011ad8878fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.