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Abstract. We investigate eigenvalue perturbations for a class of infinite tridiagonal matrices
which define unbounded self-adjoint operators with discrete spectrum. In particular we obtain
explicit estimates for the convergence radius of the perturbation series and error estimates
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due to Jaynes and Cummings.
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1. GENERAL PRESENTATION

1.1. INTRODUCTION

The main motivation of this paper is the Quantum Rabi Model (QRM) which is the
simplest physical example of interactions between radiation and matter. We refer
to [19] for physical explanations (see also [4]) and to [23] for a list of recent research
works in relation with the QRM. It appears (see [3,21]) that the QRM Hamiltonian
is unitarily equivalent to the direct sum JX(g) ® J“A(g), where A, w and g are real
parameters (see Section 1.5) and J¥(g) is the self-adjoint operator defined in ¢2 by
the matrix

-2 gVl 0 0 0
gVl w+i  gV2 0 0
@ = 0 9vV2 2w-5 gv3 0 (1.1)

0 0 gV3 3w+ gV4
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The QRM has become a subject of numerous experimental works in the domain of the
Cavity Quantum Optics. In practice the value of the coupling constant g is small and
it is natural to investigate an eigenvalue by means of the Taylor series with respect
to g. Let us notice that all diagonal entries of the matrix (1.1) are distinct if s is not
a multiple of w. Thus the most interesting phenomena appear when s is a multiple of
w. For simplicity, in this paper, we consider the situation s = w and our analysis will
concern the following problems:

(i) to prove that the eigenvalue branches are analytic functions of g and to give
an explicit bound for the convergence radius,

(ii) to give explicit estimates of the error due to a cut-off of the Taylor’s series,

iii) to give a method of computing the coefficients and to express corrections of low
iii) t i thod of ti th fficient dt ti f1
order.

The results concerning points (i) and (ii) are given in Theorem 1.3. Concerning
the point (i), we must control the spectrum with respect to g in order to avoid
eigenvalue crossing. The result concerning the point (ii) is obtained in a standard way:
the Cauchy’s integral formula (see Section 2.3) gives the bounds on the coefficients
and clearly the estimates become better when the convergence radius is greater.
Theorem 1.3 is preceded by Theorem 1.2 which describes results on perturbations of
a simple eigenvalue.

The expressions for coefficients are given in Theorem 1.4 for perturbations of
a simple eigenvalue and in Theorem 1.5 for perturbations of a double eigenvalue.
The case of the matrix (1.1) with s = w has been intensively studied in physics
literature because of the rotating wave approximation introduced in the famous
paper of Jaynes and Cummings [10]. The reason of this popularity has been double:
the Jaynes—Cummings model is explicitly solvable (see Section 1.5) and the exper-
imental results had confirmed a high quality of this approximation. However more
recent experiments have allowed to enlarge the values of the coupling constant g and
have shown limits of this approximation.

Our interest in this problem comes from the paper [7], where the authors investi-
gate the quality of the Jaynes—Cummings approximation and propose the corrections
for the eigenvalues of (1.1). The authors of [7] evoke the difficulties to control an infinite
matrix and propose to look at a small block with a hope to obtain correct approxima-
tions. In this paper we propose a simple method of reducing the initial problem to
an analogical problem for a finite block (see Section 6). In Section 7 we show how
to compute the coefficients and in Section 1.5 we comment on the Jaynes—Cummings
approximation. Moreover in Section 5 we explain what is the minimal size of the block in
order to recover a given coefficient of the Taylor’s series. It appears that the coefficients
proposed in [7] are not correct because the block is too small.

The purpose of this paper is to study these questions for a more general class of
self-adjoint operators in £2 of the form J(g) = D + gB where D is diagonal and B is
tridiagonal (see Section 1.2). Thus our results can be also applied to other models, e.g.
to the two-photon version of the QRM (see [8]).
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1.2. DEFINITION OF J(g)

We denote by ¢2 the Hilbert space of square summable complex valued sequences with
the norm ||(z;)jen- || = (352, |2;|*)!/? and the scalar product (z,y) = > °2 T;y;.
The canonical basis of £2 is denoted {e;};en+ (i.e. €; = (8;j)jen+) and ¢4 denotes the
subspace of finite linear combinations of vectors from {e;};en-. We denote by o (L)
the spectrum of a linear operator L.

Let (d;)24, (b:)$2,, (b5)$2, be real valued sequences and g € R. We denote by J(g)
the closure of the linear symmetric operator defined on ¢Z by the matrix

d1 + gb/1 gb1 0 0
gbi  da+gby  gbs 0
0 gb2 ds + gby bs ol (1.2)

0 0 gbs  dy+ gb}

ie. J(9) = D + ¢gB with D and B satistying
D(ii = diei, (13)
Be; = b;ei +biei+1 +bi—1€i-1, (14)

where by convention b;_1e;_1 =0 if i = 1.
We make the following assumptions:
2

(H1) there exists po > 0 such that 2p3 < liirgirclf m,

(H2) the sequence (b;)$2; is bounded,

i—00

Lemma 1.1. If (H1)-(H3) hold, then the operator J(g) is self-adjoint, bounded from
below and has discrete spectrum for all g € [—po, po]-

Proof. See [5] or [9]. O

1.3. CONVERGENCE RADIUS AND ERROR ESTIMATES
Further on (d;)524, (b;)52,, (b))52, are real sequences satisfying (H1)—(H3) and J(g)

i=1
is the corresponding self-adjoint operator defined for g € [—pg, po]. Our first result
concerns perturbations of a simple eigenvalue of D. For this purpose we fix k € N*

and make the assumption
di #d; for ieN"\{k}. (1.5)

Since o(J(g) — (d+ gb)I) = o(J(g)) — (d + gb), our analysis of J(g) can be reduced
to an analysis of J(g) — (d + ¢gb)I and in particular we can use d = dj, b = b}.. Thus,
without any loss of generality we can assume dj, = b}, = 0. Moreover we denote

Bi = |bi_1| + |bs| + |]. (1.6)
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Theorem 1.2. We fiz k € N* and assume dj, =), = 0. Let p > 0 be such that

. |di]
= Y 7

where fB; are given by (1.6). We also assume that (H1)—(H3) hold and p < py.

(i) If —p < g < p then the interval [—Brp, Brp] contains exactly one eigenvalue
of J(g),
[=Brkp, Brpl N (J(g)) = { (S (9))}- (1.8)

(ii) The eigenvalue A\, (J(g)) is simple and g — A (J(g)) is real analytic, i.e.
Me(J(9) =D crng” if —p<g<p. (1.9)
v=1

(iii) The coefficients in (1.9) satisfy the estimates |ck,,| < Bep'™" and one has

if —p<g<op. (1.10)

M) = D cnwy”

N+1
< Brlgl
1<v<N (

p—lgl)pN -1

Proof. See Section 6. O

Our second result concerns perturbations of a double eigenvalue of D. For this
purpose we fix £ € N* and make the assumption

dk+1 =d #dj for i EN*\{k7]€+1} (111)

Without loss of generality we can replace J(g) by J(g) — (d 4+ gb)I with d = d,
b= (b, + b}, 1)/2 and further on we assume

dk+1 = dk =0 and b;c_‘_l = 71);6 (112)
We introduce the quantities

e = (b + 02 )2, (1.13)
Bioy = |br—z| + [0y 41, (1.14)
Brto = [brta| + Dy yal, (1.15)
Ve = 3max{|bg—1|, (e[} + 2max{p, Bi_1, Biya}s (1.16)

br—1| |brt1
o max{ ‘ ‘ } 1.17
Tk dip—1 1" ldiy2 (117)

and
B = |bi_1| + |bs| + || if i¢[k—1k+2]. (1.18)
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Theorem 1.3. Assume that (H1)—(H3) hold and k € N* is fized. Assume moreover
that (1.11)—(1.12) hold and 0 < p < pq satisfies the conditions

. ||
L e E— 1.19
p—i¢{k,k+1}2(ﬁi’+uk) (1.19)
dppe < inf |dil, 1.20
pukfie{;fr}kﬂ}\ | (1.20)
PV X < i, (1.21)

where pi, Yk, Yp, 87 are given by (1.13)—(1.18).
(i) If —=p< g < p and g #0, then

[=2pp, 20kp] N (I (9)) = {Ak(T(9)); Ars1(J(9))}, (1.22)

where the eigenvalues A\, (J(g)), Ae+1(J(g)) are simple and satisfy

Me(J(9)) <0< Mey1(J(g)) if g >0, (1.23)
Ar+1(J(9)) <0 < Ae(J(g)) if g <O.
(ii) If 5 =0, 1 and px+1 := —pg, then one has
Meri (J(9) = —prrig + D crrjwg” if —p<g<p. (1.24)

v=2
(iii) The coefficients in (1.24) satisfy the estimates |cx1j.| < prp'™ for j =0, 1 and

|N+1

<(“’“|g - if —p<g<p.

N3 (J(9)) + pitj9 — Chtjwd’ | S T
k?Jr]( ( )) Hk+5 Z k+j p—|g\)pN_

2<y<N
(1.25)

Proof. See Section 6. O

1.4. COEFFICIENTS OF THE PERTURBATION SERIES
Theorem 1.4. Let J(g) be as in Theorem 1.2.
(i) If b = 0 holds for all j € N*, then cy,, = 0 when v is odd and (1.9) holds with

b bi
Cko = — - 1.26
w2 A1 dp—1 (1.26)
SRS SR UL | U SR S S,
’ d2+1 di_l di—ldkﬂ dz+1dk—1 di+1dk+2 di—ldk—Q

(ii) In the general case one has

Me(J(9)) = c2(9) 6 + canlg) g* +O(g%), (1.28)

where ¢ 1(g) and ca k(g) are given by using d; + gb; instead of d; in (1.26)—(1.27).
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Proof. The assertions of Theorem 1.4 can be deduced from general formulas given e.g.
in [16]. However we give an independent proof in Section 7.3. O

Next we assume that J(g) is as in Theorem 1.3. We denote

di(g) == d; + gb} for i € N*, (1.29)
. iy
bi(g) :==b) + g——Prt 1.30
k( ) k dg(g)*dg_l(g) ( )
bry1(9) == b1 + 95 b%—HO ) (1.31)
dk+1(9) - dk+2(9)
21,2 21,2
7 9°b 9 i >
b (g) := by, <1— - (1.32)
) =0\ S @) — P 2T (0) - A a(0)?
and introduce the matrix
bi(g)  bi(9)
Bi(g) == | & k : (1.33)
; bE(g) bhi4(9)

Theorem 1.5. Let J(g) be as in Theorem 1.3, i = (b3 + b/} )1/2 and pgy1 = —[g-

(i) Let Bj(g) be given by (1.33) and for j =0, 1, let )\,1€+j(g) denote the eigenvalue
of Bi(g) satisfying /\,16_‘_]- (9) gTO> —pitj. Then

Mo+ (1(9)) = g My (9) + O(g"). (1.34)
(ii) If b, = 0, then the estimate (1.34) implies

b2 b2
Mt (J(9)) = —prrig — gz(ﬁ + ﬁ) +0(g%). (1.35)

(ili) At the end of Section 7.2 we give expressions for Ap(J(g)), 7 = 0, 1, with
the error O(g®).

Proof. See Section 7.2. O

1.5. JAYNES-CUMMINGS APPROXIMATION

The simplest interaction between a two-level atom and a classical light field is described
by the Rabi model [14,15]. The quantized version can be reduced to JX(g) ® J¥A(9),
where A is the separation energy between two atomic levels and w is the frequency of
the quantized one-mode electromagnetic field. In [10], Jaynes and Cummings proposed
to approximate J¥(g) by
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-5 0 0 0 0
0 w+s gV2 0 0
T2 (g9) = O evr g 0 ’ (1.36)
0 0 0 3Bw+i gv4
0 0 0 Vi w3

under the assumption that s ~ w and g is small. Since jsw(g) is the direct sum

s 2mw + (s — w) g\/ﬂ) ) (1.37)

2+iw<g>=<0)@6|9( N o

meN*

we can find explicitly all its eigenvalues. Physical reasons for this approximation in
semi-classical and fully quantized version were usually given by means of the time
dependent perturbation theory (see [1,6,20]). The time independent approach was
proposed in [7].

Following [7] let us consider the case w = s. In this case, the eigenvalues of (1.36) are

(2m—HwEgV2m, m=0,1,2,...

On the other hand we can use Theorem 1.5 without the hypothesis dy = dx11 = 0.
The corresponding shift of the diagonal entries in (1.35) gives the expressions

2 b2 b2
g k—1 k+1 3
dp, = glbi| — = 0]
b 9lbd 2 (dk—l —dy * diy2 *dk) +0)

for the couple A\, (J(g)), Ak+1(J(g)). In the case of the QRM with s = w, one has
b, = \/E, dom — dom—1 = domy2 — dom+1 = 2w and the corresponding eigenvalue
couple {Xam(J%(9)). Amsr(J2(g))}, satisfies

2
(2m — 3w £ gv2m — 2970 +0(g%).

We observe that these eigenvalues coincide with the eigenvalues of the
Jaynes-Cummings model modulo O(g?). We can also use Theorem 1.5 with b} # 0 in
order to cover a situation when the difference s — w = cg. Reasoning similarly as
in Section 2.4 it is also possible to consider the case of entries b;, b, which are analytic
functions of g. We have not used this framework in order to simplify the expressions
for the convergence radius.



308 Mirna Charif and Lech Zielinski

2. PRELIMINARIES

2.1. INTRODUCTION

Sections 2-5 present a finite dimensional perturbation theory. In these sections
we denote by L£(V) the set of all linear operators defined on a finite dimensional
linear space V' and {e;}?_; denotes the canonical basis of C™.

We assume that J : C — £(C™) has the form

J(g) =D +gB(g), (2.1)

where D = diag(d;)?_,, i.e. De; = d;e; for i = 1,...,n. Sections 2.2 and 2.3 contain
two elementary lemmas which are basic ingredients of our further analysis and in
Section 2.4 we prove a finite dimensional version of Theorem 1.2. We will use the
following notation.

Notation 2.1.

(a) For A€ C and p>0 we denote D(\, p) :={Ne€C: |N =\ <p}. If p> 0 then
D(A, p) :={N€C: |N = Al < p} and ID(A, p) :={NeC: |N = A =p}.

(b) We denote by (-, -) the scalar product of C" and write B(g) = (b; j(g))};—; with
bij(g) = (ei, B(g)e;)-

(¢) Forp>0andi=1,...,n, we denote [;(p) := sup Z ;5 (9)]-
g€D(0,p) 1<<n

2.2. AN AUXILIARY RESULT
Lemma 2.2. We fixk € {1,...,n}. Let p > 0 be such that Br(p) > 0 and denote

|dy. — di

Plo) =iy pBi(p) + pBi(p)

(2.2)

If ¢x(p) > 1 and |g| < p, then

OD(dx, pPi(p)) No(J(g)) = 0. (2.3)

Proof. The Gershgorin’s theorem (see [18, Theorem 3.11]) ensures o(J(g)) C
Dy U...UD,, where

Dy = D(di + gbia(9). Y lgbi(9)])-

J#i
Since D; C D(d;, |g| B:(|g])), it remains to show that for every i one has

lgl < p = OD(dx, pBr(p)) ND(ds, |g| Bi(p)) = 0. (2.4)



Perturbation series for Jacobi matrices and the quantum Rabi model 309

Since |g| < p = D(dy, |g| Br(p)) CD(dk, p Be(p)), it is clear that (2.4) holds if i = k.
Assume now that i # k. Since by definition, ®(p) > 1 implies

i — di| > pBr(p) + pBi(p), (2.5)
we deduce (2.4) from the fact that (2.5) ensures D(dy, pBr(p)) ND(d;, pBi(p)) = 0. O

2.3. USE OF THE CAUCHY’S FORMULA

Lemma 2.3. We fir 3> 0 and p > 0. If n: D(0, p) — D(0, Bp) is holomorphic, then
[ (0)] < Bt~ (26)

holds for every v € N. Moreover for every N € N and g € D(0, p) one has

(v) N+1
W Y .

ST TN oN-T° (2.7)
ooy Y (p—1lghp™—1

Proof. Denote ¢, = n*)(0)/v! and take p’ < p. Then the Cauchy’s formula
1

Cy = .
2mi

]{ n(g) g~ ~dg
lgl=p’
allows us to estimate |c,| < Spp’~" and taking the limit p’ — p we obtain
el < B (2.8)

Using (2.8) we can estimate the left hand side of (2.7) by

> lesls 3 =
e’ < 32 Bollgl/p) = Br—rra——
v>N+1 v>N+1 PN —gl/p)
completing the proof of Lemma 2.3. O]

2.4. FINITE DIMENSIONAL VERSION OF THEOREM 1.2

Let us fix pg > 0 and assume that B is holomorphic (0, pg) — L£(C™), i.e. g — b; ;(9)
are holomorphic on D(0, pg). We fix k € {1,...,n} and assume that

dp=0#d; if i £k (2.9)

Assume moreover that 0 < p < pg is such that Bi(p) > 0 and ¢r(p) > 1. Due to (2.9),
dy, = 0 is a simple eigenvalue of J(0) = D and (2.3) allows us to define
1

2mi
[X=pB(p)

Pu(J(g) = —— 74 (A= J(g) " dx (2.10)

for g € D(0, p).
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Following Kato [11] we observe that ¢ — Px(J(g)) is a holomorphic family of
eigenprojectors of J(g) satisfying

rank Py (J(g)) = rank P, (J(0)) =1
and A, (J(g9)) = tr (J(g)Pe(J(g))) is an eigenvalue of J(g) satisfying

a(J(g)) N D0, pBi(p)) = { A (J(9))}-

Since g — Ag(g) is holomorphic D(0, p) — D(0, pBk(p)), the estimates (2.6)—(2.7) hold
with A\;(g) and Bi(p) instead of n(g) and 5.

3. QUASI-DEGENERATE CASE IN FINITE DIMENSION

3.1. INTRODUCTION

In this section J(g) = D+gB(g) is holomorphic D(0, pg) — L£(C™) and D = diag(d;)?_,
Moreover we fix n € {1,...,n — 1} and we make the assumption

We write C* = 176917 with

V= span {e;}, ;o (3.2)

Vi=span{e;}, 5o, (3.3)

and consider the corresponding decomposition

o~

D=D&D= diag(d;)7_; @ diag(d, ) (3.4)

=1+n’

where D € £(V) and D € L(V) are the restrictions of D to V and V, respectively.

Then the assumption (3.1) means that D and D have no common eigenvalue.
Analyticity results for degenerate eigenvalues were given in [17], but in this paper

we will develop an approach of Schrieffer—Wolff [2] (see also [2,12,13,22]) in order to
prove the following result.

Proposition 3.1. Assume that (3 1) holds and g > 0 is small enough. If |g\ < &g
then J(g) is similar to Joo (9) @ Jno o (9) where JOO is holomorphic D(0,e0) = L(V ) and
Joo is holomorphic D(0,e0) — L(V). Moreover Jo(0) = D and Jo (0) = D.

Proof. See Sections 3.2-3.4. O
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Using Proposition 3.1 in the case n = 2 we get the following corollary.

Corollary 3.2. Assume that (3.1) holds with n = 2 and d; = da = 0. Assume
moreover that B(0) is self-adjoint and b1 2(0) # 0. If 0 < p < min{|d;| : j > 3}, then
there exists € > 0 such that for g € D(0,¢) one has

D0, p) Na(J(g)) = {M(J(9)), A2(J(9))}, (3.5)
where g — X;(J(g)) are holomorphic on D(0,¢) for j =1, 2 and
Ai(J(9)) = wig + O(g%), (3.6)

where u1, ps are eigenvalues of E(O) = (bi ;(0))1<4 <2

Proof. Let € > 0 be small enough. Then the assertion of Proposition 3.1 ensures

~ ~

o(J(9)) = 0(Jx(9)) Ua(J(g)) (3.7)
and there exists C > 0 such that
dist (0(Joo (9))s {d3, - - -, dn}) < Clgl. (3.8)

Due to (3.8), D(0,p) No(Jx(g)) = 0 holds for € > 0 small enough and (3.7) ensures

~

D(0,p) Na(J(g)) C 0(Joc(9))-

However Jao(g) = gBaso(g) and Bao(g) = B(0) + gé&)(g) follows from (3.39) and
(3.28), where ﬁo(g) = (b;,;(9))1<i,j<2. The hypotheses that E(O) is self-adjoint and
b12(0) # 0 ensure that fact that E(O) has two distinct eigenvalues pq, uo, hence
U(Ew(g)) = {p1(9), n2(g)} holds with g — 11,(g) holomorphic in a neighbourhood of
0 due to the usual perturbation theory presented in Section 2.4. O

3.2. SCHRIEFFER-WOLFF APPROXIMATION

We will define Joo(g) @ Joo(g) as the limit of a sequence of operators (J1(9))2, of
the form
Ji(g) = D+ gBi(g)- (3.9)

Using induction with respect to I we begin by setting Jy(g) := J(g). Assume now that
Ji(g) is given by (3.9) and

_(Bile) Ef(9)
Bz(g)—<Rl(g) Ell(g)> (3.10)

where Elsﬁﬁf/, El:f/%f/, RT:XA/%‘N/, Rf:v%‘A/.Then

Bi(g) = Buig) @ Bi(g) + Ri(g) (3.11)
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and Ri(g) = (ri(9))} = satisfies r; j; = 0if (4,7) € [1,7]> U [A + 1,n]*. We define
Qu(9) = (¢i,4.1(9))7j=1 by the formula

irijilg) ... . PUPSEEEN 9
5 7 lf(z7.])¢[1an] U[n+lan] )
¢iji(g9) = di—dj
0 otherwise

(3.12)

and observe that (3.12) ensures the equality
[D,1Qu(9)] = —Ri(g), (3.13)
where [A, A'] = AA" — A’ A is the commutator of A, A’ € £L(C™). Then we define
Jip1(g) = €991 Jy(g)el9Q19), (3.14)
Notation 3.3. If g € C\ {0} and A, @ € L(C™), then we denote
F,0(A) :=e 994199 — A, (3.15)

A@dAyzéG”WAﬁQ—A—gMJ@) (3.16)

Using these notations we can express the equality (3.14) in the form

Ji+1(9) = D + g (Bi(g) + [D,iQi(9)] + Fi(g) ) (3.17)

with B
Fi(9) = Fyqu(9)(D) + Fyqu(9)(Bi(9)) (3.18)
and combining (3.17) with (3.11)—(3.13) we obtain

Jiy1 =D +g(Bi® B+ F). (3.19)
3.3. NORM ESTIMATES

Notation 3.4.
(a) We denote by || - [|o the norm defined on V by

|z]lo = (z,2)/? for zeV. (3.20)
(b) We denote by || - ||’ the norm defined on V by

|z||' = max |z;| for z€V. (3.21)
7
(¢c) We denote by | - || the norm defined on C" by the formula
|Z + Z|| := max{ ||Z]lo, |Z]'} for TeV,TeV, (3.22)

and ||A]| = sup{||Az|| : ||z|]| = 1} is the corresponding operator norm.
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Lemma 3.5. If A and Q € L(C"), then

1Eyo(A)] < 19214, gQII, (3.23)
| Fse(A)] < 5 172N [[4, QL. 9@l (3:24)
Proof. Using integral remainders of the Taylor’s formula for s — e 7199 A4e'*9% we get

1

Fyo(A) = /e*ing[A,ng]eingds7 (3.25)
0
1
Fyq(A) = / e 99([4,iQ],igQle™ 99 (1 — s) ds. (3.26)
0
We complete the proof using ||e!*9%|| < ell9Ql, O

Lemma 3.6. Assume that Cy > 0 is fized large enough. Then there exists eg > 0 such
for g € D(0,e0) and m € N one has

1R (g)ll < Co ™2™ g™, (3.27)
1Bin(9) @ Bin(9) = Bn-1(9) ® Bn-1(g)ll < Cg™"[g™], (3.28)

where for m = 0 we take ém_l =0 and Em_l =0 in (3.28).
Proof. First of all we can assume that Cy > 0 is large enough to ensure
IB(g)|| < Cp for g € D(0, ) (3.29)
for a certain €9 > 0 and
1Qi(9)]l < CollRu(g)]l- (3.30)
Let I € N be such that the estimates (3.27)—(3.28) hold if m < . Further on we assume
that |g| < o and 2C3eg < 1. Then one has C3 ™™ |g™| < 2-"Cy and
|Rm(9)]| <27™Ch if m <1, (3.31)
|Bin(9) © Bin(9) — Bi-1(9) @ Bin—1(9)|| <27 Cy if m < L. (3.32)

Using (3.32) we can estimate || B;(g) @ Bi(g)| by

l

1B (9) ® Bin(9) — Bin-1(9) @ Bp—1(9)|| < 2Co,
0

m=

hence
IBi(9)ll < |1Bi(g) @ Bilg)|| + |Ri(9)]| < 3Co. (3.33)
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Next we observe that (3.19) gives

- By - B R}
F=B1—-B@oB=|"""7t T (3.34)
R, B — By

and in order to prove that (3.27)—(3.28) hold for m = [ + 1 it suffices to check the
estimate

IE ()l < Cg g™+, (3.35)
However using A = D and [D,igQ;] = —gR; in (3.24), we can estimate
1Fooi (D) < 599N [Ri(g), 9Qu(]ll < e[ Ri(9)]l l9Qu(9) (3.36)

due to 2||gQ1(9)|| < 2e0Co||Ri(9)|] < 260C3 < 1 and ||[A, A']|| < 2|| A ||A’||. Similarly,
(3.23) allows us to estimate

1Fs(Bi(9)]l < 2e[|Bi(9)]l lg@i(9)]l- (3.37)
Combining (3.36), (3.37) with (3.18) and assuming Cy > 7e, we get
IE(9)]| < e(lR:(9)]l + 211 Bi(9)ID]g] Coll Ri ()
< 7eC3lgl | Ri(9)ll < C5lgl [1Ri(9)]]-
Thus (3.27) for m=1 gives (3.35), completing the proof of (3.27)—-(3.28) for m =1+ 1.

O
3.4. END OF THE PROOF OF PROPOSITION 3.1
For m, [ € N satisfying m < [ we denote
Um.i(g) = e99m  l9Qi-1, (3.38)
Let €9 > 0 be small enough. Due to Lemma 3.6 we can define
Buo(g) = lim Bi(g). Buc(9) = Jim Bi(g) (3.39)

and the convergence is uniform with respect to g € D(0,eg). Thus denoting
Joo(9) == D+ gBoc(9),  Jool9) == D+ gBuc(9),

we find that Ji(9) = Uoi(9) "' J(9)Uo,(g) converges to Joo(g) @ Joo(g) uniformly
on ID(0, gg). We still assume g € (0, gp). Then

Uil < exo (D 1lgQil9)]]) < €
m<i<l
and ||Uo,i(g) — Uomll < Cil|Unm,i(g) — I|| can be estimated by
Co Y [e99@ — 1) <Cs Y NlgQi(g)ll <27 Cllgl-
m<i<l m<i<l

Thus we can define Uy, (g) as the limit of Uy ;(g) as | — oo and ||Uso(g) — I|| < Clg|
holds if C' > 0 is fixed large enough. Assuming moreover |g| < 1/(2C) we conclude
that Up(g) ™! converges to Us(g) ™1 as | — oo and J(9) = Uso(9) "1 (9)Usx(9)-
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4. FINITE DIMENSIONAL VERSION OF THEOREM 1.3

4.1. INTRODUCTION

In this section we consider J(g) = D + gB € L(C"), assuming that D = diag(d;)?
and B is a tridiagonal matrix,

by by 0 O
by by by O
B=|0 by by by ---f (4.1)
0 0 by b -
We fix k € N* and assume
diy1 =dpy =0#d; for i ¢ {k,k+ 1} and b}, = —by. (4.2)

Next we remark that a suitable permutation of the canonical basis allows us to work
in the framework of Section 3 with 7 = 2, i.e. we can decompose

C"=V oV with V.= span{eg, ex1+1} and V=7t (4.3)

Then D = D @ D holds with D = diag(0,0), D = diag(d;)ig(x+1y and

B R Lo (Y by
B= v th B=(* . 4.4
(R B) " G %) )

~

We observe that o(B) = {—pu, u} holds with
o= (b + b7 )2 (4.5)
Due to Corollary 3.2 the spectrum of J(g) near 0 is composed of two eigenvalues

Me(J(9)) = =g+ 0(g%),  Aes1(J(9)) = pg + O(g°), (4.6)

holomorphic on D(0,€) for a certain € > 0. In the remaining of the section we prove
the following proposition.

Proposition 4.1. Assume that J(g) = diag(d;)?_, + gB holds with B given by (4.1)
and real entries (d;)7_y, (b))7=, (b5)P_, satisfying (4.2). Let ux = p be given by (4.5)
and let (8™ 1, (vi)iy, (7)) be given by (1.14)—~(1.18). Assume moreover that p > 0
satisfies (1.19)—(1.21).

(i) If —p< g < pand g #0, then (1.22) and (1.23) hold.
(i) The ezpansion formula (1.24) holds with py1 = —pe = — (b2 + b2 )2
(iii) The coefficients satisfy |ck+jn| < pep' ™ for j =0,1 and (1.25) holds.

Proof. The proof is given in four steps described in Sections 4.2-4.5. O
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4.2. FIRST STEP OF THE PROOF OF PROPOSITION 4.1
Notation 4.2.
(a) For m € N we define the linear subspace

Vin 1= span{€x+ific[—m,m+1]- (4.7)

-~

We observe that dim V;,, = min{2m + 2,n} and V; = V.
(b) We define II,,, as the orthogonal projector on V,,, and IT/,, := I —II,,,.

Reasoning as in Section 3.2 we denote J;(g) = D + gB; where By = B and (3.14)
holds with Q; € £(C") satisfying (3.13). Then using notations 4.2, we can write

B, & B, = 1y B1l, + 11, B11). (4.8)

In this section we consider (3.14) with | = 0 and as before Fy(g) is given by the
equality o
Ji(9) =D+ g(B® B+ Fy(yg)). (4.9)

Moreover, Ry = B — B @ B satisfies Ry = II; RoII; and has the form

0 br—1 0 0

I T Y
RO - O O 0 bk_;,_l @ (O)VlJ. (410)
0 0 b O

where @Vli is the zero map on V. Thus Qo = I1;QoIl; has the form

_ |1 O 0 0
Q="" 0 0 .. |®0w (4.11)
0 0 g1 O
with
Qo1 = —ibgy1/dpy2, Qo1 = 1bg_1/dk—1. (4.12)

We consider V @ V with the norm defined by (3.20)(3.22). Then

|| Rol| = max{[bg—1], [bx+1]}, (4.13)
1Qoll = 1, = max{lge—1], lgr1[}- (4.14)

Lemma 4.3. We have the estimate
1Fo(9)Il < vk lgle? 19l (4.15)
Proof. Due to Q¢ = I1;QoIl; we have

[B,Qo] = [B°,Qo] with B°:= B —1II,BII, (4.16)
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and ||Fy(g)|| can be estimated by
9@l L[ Ro, gQolll + 1B°, 9Qulll) < €199 N[l gQoll([| Roll +2[[B°).  (4.17)
Due to (4.13)—(4.14), (4.15) follows from (4.17) if we show that
[Roll + 2B < k- (4.18)
However B° = Ry + Iy B°Ilj 4 II, B°II}, holds with Iy B°Ily = Beo @VOJ_ and

0 bes 0 0
by U,_, 0 0

! poty/
IT, B°II;, = Oy, ¢ 0 0 b;c+2 brosa @@Vzu
0 0 b2 0
hence
([T, BT || < max{|b—a| + [bf,_1], [brta| + [bial}- (4.19)

In order to obtain (4.18), we observe that || B°|| can be estimated by
[Roll + [ITTo B°Tlo + T B°Tg || = || Ro| + max{|[Tlo BTl ||, [T, B°Th|[}  (4.20)

and it remains to use (4.13), (4.19) and ||[IIp B°Ily|| = p (the last equality is due to
the fact B is unitarily equivalent to diag (—p, ) and || - ||o is the euclidean norm). O

4.3. SECOND STEP OF THE PROOF OF PROPOSITION 4.1

Lemma 4.4. Assume that X € C\ {—gu, gu} is such that |\| < 2up, where p satisfies
(1.19)—(1.21). Denote

J10(9) = gB @ (D + gB). (4.21)
Then

1 1 1
Jio(g) = N)7H| < max , “ont 22
I(J1.0(9) =0 {|)\—g,u| A+ gul W} 2

Proof. We denote j(g) =D+ gE and observe that
(J1o(9) =N =(gB-N"" @ (J(g) - N (4.23)

Since B is unitarily equivalent to diag (—su, p) and | - [jo is the Euclidean norm,
the corresponding operator norm

~ 1 1
B-XN"1o= , . 4.24
9B =0y =max { = o ) (4:24)

Due to (4.24) and (4.23), the proof of (4.22) will be complete if we show
~ 1
J(g) = N7 < —, 4.25
1(7(g) =) o (4.25)

where we used || - ||’ to denote the operator norm induced by the norm (3.21).
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Since (1.20) ensures 2pu < |d;| — 2pp < |d;| — |A| < |d; — A| for all ¢ ¢ {k,k+ 1},

1 1
D— )"t —_— < — 4.2
i )= zgé{k k+1} |d; — )\| 201 (4.26)

Let us introduce A(X) := (D — A\)~1B. We claim that (4.25) follows from
lgA| < L. (4.27)

Indeed, we obtain (4.25) using (4.26)—(4.27) to estimate the norm of the resolvent
series

(T(@) == (—9AN)" (D-N""

veN

In order to prove (4.27) we observe that A(\) = (@i ;(N), i¢(kry1y 1S the matrix with

- _ - ei, Be;
5150 = {e0 (D — N7 Bey) = (D~ N)e;, Bey) = B
and since V5t is equipped with the norm (3.21),
!

AV < max Y fa@;(A)] =

ig{k,k+1} eleren

i 4.28
ig (k1) |d; — A (4.28)

However, if i ¢ {k,k + 1}, then (1.19) ensures |d;| > 2p(p + ;) and consequently

\di — Al > |di| — |A| > |di] — 20 > 208,

Thus the right hand side of (4.28) can be estimated by ﬁ and ||gA(\)|’ < % <i O
4.4. THIRD STEP OF THE PROOF OF PROPOSITION 4.1
Lemma 4.5. Assume that p satisfies (1.19)—(1.21).
(a) If lg| < p, then
oD(0, 2pp) Mo (J(g)) =0 (4.29)
(b) Assume that 0 € [0,27] and 0 < t < p. If g = te'’ then
OD(tppe’®, pp) Na(J(g)) = 0. (4.30)

Proof. (a) If |\| = 2up then |\ £ gu| > pp > plg| and Lemma 4.4 ensures

1(J10(9) = N7 < 1/(glw). (4.31)

Denote Ax(g) := Fo(g)(J1,0(g) — A)~'. Then (4.31), (4.15), (1.21) and |g| < p, ensure

lgAx (9l < llgFo(@) | (ro(g) = NI < lglPime™ e /(ulgl) < 1, (4.32)
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hence A ¢ o(J1(g)) = 0(J(g)) follows from the convergence of the resolvent series

(Jilg) =N = (Jrolg) = N7 D (—g4x(9)” (4.33)

veN™
(b) If 6 € [0,27] and 0 < ¢ < p, then
dist (£ tue'?, oD (Lpup, up)) = dist (£ tp, OD(E£pp, pp)) = tp. (4.34)
If A € OD(Fpupe'?, pup) = e OD(Epup, pp) and g = te'?, then |\ £ gu| > |g|u holds due
to (4.34). Then Lemma 4.4 gives (4.31), (4.32)—(4.33) and A ¢ o(J1(9)) = o(J(g)). O

4.5. END OF THE PROOF OF PROPOSITION 4.1
Lemma 4.5(a) allows us to define on (0, p) the projectors

Pg) = = f (A~ J(g)) " dA (4.35)
oD(0,2pp)

with rank P(g) = rank P(0) = 2, i.e J(g) has at most two eigenvalues in D(0, 2pp).
Our next step is to show that for k € {1,—1} one has

card (U(J(|g|ei‘9)) N ]D)(/fpueie,p,u)) =11if0<|g| <p. (4.36)

Let us choose £ > 0 small enough. Then the property (4.36) holds if 0 < |g| < € due
to (4.6). Due to Lemma 4.5(b), the property (4.30) holds for g € K. g := [, p|e®.
Since K. g is compact, K. s has an open connected neighbourhood U ¢ such that
the property (4.30) still holds for g € U 9. Thus

Pi(g)= -1 f (A J(g))""dA (4.37)

OD(Fppet?,pp)

are two holomorphic families of projectors defined on U, . However (4.6) ensures
the fact that rank Py (g) = 1if |g| < e, hence rank P1(g) = 1 for all g € U, g. Thus,

gE€Ug = a(J(g)) ND(Eppe, pu) = {A1(9)}

where g — Ay (g) = tr J(g9)P+(g) are two distinct eigenvalues of J(g) if g # 0. Thus

a(J(g)) ND(0,2pp) = {A(9), A (9)} (4.38)

and Ai(g) (respectively A_(g)) is the holomorphic extension of Ap41(J(g))
(respectively Ag(J(g))) defined on (0, p). Since n(g) = Ax+1(J(g)) — pg is holomorphic
D(0, p) — D(0, up), Lemma 2.3 ensures |cx4j.| < pp' ™ and (1.25) holds for j = 1.
Similarly, using n(g) = Ak(J(g9)) + pg we obtain (1.25) for j = 0.
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5. BLOCK APPROXIMATION

5.1. INTRODUCTION

Let J(g) be as in Proposition 4.1 and ¢ ,, cx+1,, the coefficients of the series (1.24)
for A\ (J(g)) and Ag+1(J(g)) respectively. In this section we fix v € N* and claim
that cx, and cgy1, depend only on the entries {(dpyi,) ;) ic[—v/2,14v/2) and
{bk+i}ie[_y/2,l,/2]. In other words, the computation of ¢;, and cgy1,,, can be reduced
to the computation of the corresponding coefficients for the operator defined by the
sub-matrix of the matrix .J(g), namely by the block ({ex+i, J(9)er+5)) .5 e[—v/2,14v/2]2-
For this purpose we prove

Proposition 5.1. The coefficients ci,, and cpy1,, depend only on 11 J1I;, where l € N
1s such that 2l +1 > v.

Proof. The proof is given in three steps described in Sections 5.2-5.4. O

5.2. GENERALIZED KATO-TEMPLE ESTIMATE
Notation 5.2.

(a) Since p and —p are two distinct eigenvalues of El(O) = B, choosing g9 > 0
small enough we ensure the fact that for g € [—£¢, &o] the matrix B;(g) has two
eigenvalues Ao ;(g), A1,(g), satisfying

Noi(9) = =1+ 0(g),  Aia(g) = p+ O(g). (5.1)
For j € {0,1} we denote \;;(g) := ng,l(g). Thus (5.1) implies
Xoi(9) = —pug +0(g%),  Au(g) = pug + O(g?) (5.2)

(b) We denote J;o(g) := 9Bi(9) ® (D+9gBi(g)). Thus
(J10(9)) = {X0.4(9); M1(9)} Ua(D+gBi(g)) (5-3)

holds due to a(ggl(g)) = {X0.(9), A1.1(g)}-

These notations allow us to deduce immediately the following estimate

Meti(J(9)) = Xjulg) + O(g"*h) (5 =0,1). (5.4)
Indeed, if 0 < p' < min |d;|, then choosing £9 > 0 small enough we ensure
i {k,k+1}
a(Ji0(9) N [=0, 01 = {Pou(9): Aialg)} if g € [~eo, 0] (5.5)

and Ji(g9) — Ji,0(9) = gRi(g) = O(g'™!) implies

dist(0(Ji(9))), o(J10(9)) = O(g") (5.6)
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due to the min-max principle. If g € [—eq, &¢] then combining (5.6) with (5.5) and
Proposition 4.1, we get

dist({Ae(J(9))s Ars1(J(9))} {h0.0(9), Ari(9)}) = O(g) (5.7)

and it is clear that (5.4) follows from (5.7) and (5.2).

However writing an analogical decomposition in the case of perturbations of
a simple eigenvalue, we find that the standard Kato—Temple inequality (see [18,
Theorem 3.8]) ensures error estimates O(g**2) for the eigenvalue perturbed by the
terms of order O(g'*1) in the k-th line and k-th column. The following lemma states
an analogical result in our framework.

Lemma 5.3. For j =0, 1, let \j;(g) be defined as in Notation 5.2. Then
Meti (J(9)) = Ajulg) + O(g™+?). (5.8)

Proof. Step 1. We claim that §l+1 =B+ O(g*+1h).
Since J; = D+g(§l @ B, + R;) holds with R;(g) = O(g') and J;;1 can be expressed by

IO g, +igl,Ql — L QU QL ~ 1L (. QL QLG + .. (59)
with [D,iQ;] = —R; and Q;(g) = O(g'), we obtain J;11 = D + gB;y; with
By = El @ El + [El 2] Elangl] + O(g2l+1)-
Therefore
Biy1 ® Oy =g BiyaTly = B @ Oy + 1Io[By @ By, igQi]Mo + O(g* )
and we obtain §l+1 = El + O(g?*+1) if we check that
IIo[B, & By, Q]I = 0. (5.10)

However Oy © By = IT, BT, and obviously IIo[IT, B;IT}, ;]I = 0. To complete the
proof of (5.10) we observe that B; & Oy = o BiIly and

o [T By 11y, @Qi]11y = TIo[I1o B;11g, I Q;11] 11y = 0,

where the last equality follows from the fact that I13Q;IIy = 0.
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Step 2. We claim that glﬂ» = El + O(g**1) holds for all i € N.
Indeed, reasoning by induction we can repeat the proof from Step 1.
Step 8. To complete the proof of (5.8) we observe that (5.4) ensures

Aeti((9)) = Nj2ir1(9) + O(g*+?) (5.11)
and choosing €¢ > 0 small enough we obtain
Nj2i41(9) = X51(9)] < lg(Baisa(g) — Bu(9)) | = O(6*+2)

for —gg < g < gg due to the min-max principle. O]

5.3. SECOND STEP OF THE PROOF OF PROPOSITION 5.1

Lemma 5.4. For everyl € N one has
(i = Dy =0 =T, (7 J), (512
)

R, =0=1I,,R,. (5.13

Proof. If I = 0, then (5.12) holds due to Jy = J and (5.13) holds due to (4.10).
Reasoning by induction we fix [ > 1 and assume that (5.12)—(5.13) hold with [ — 1
instead of I. However R;_1II) = 0 = I} R;_; implies

QI =0=11}Q;_, (5.14)
and consequently 99111/ =TI’ if m > I. Therefore
Iy = e 99 1 99T = e 99 g TT = e 99T, (5.15)

where the last equality is due to (5.12) with [ — 1 instead of I. However a tridiagonal
matrix J satisfies JII;, | = I[}JII}; and

e W JIT | = e W I T = )T, = JIO . (5.16)
Combining (5.15) with (5.16) we get (J;—J)II;, ; = 0. Similarly we get IT} , (J;—J) = 0,
hence (5.12) holds and it remains to prove that (5.12) implies (5.13).
Since B; = (J; — D)/g, it is clear that (5.12) implies
(B — B)H;+1 =0= 2+1(Bl - B). (5.17)

Using
R, = B, — Uy Bl — I BIIj, (5.18)

and (B; — B)IT;; = 0 we get
(Rl - RO)H;H = (Bl - B) §+1 - HO(BI - B)H;+1H0 - HB(BZ - B) §+1H6 =0.

Similarly I}, (B; — B) = 0 implies 1T} (R; — Ro) = 0. O
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5.4. END OF THE PROOF OF PROPOSITION 5.1

Let J(g) = D+ gB and J°(g) = D° + gB° be two operators satisfying the hypotheses
of Proposition 4.1 and assume that

I1;(J(g) = J°(g)ILi = 0 (5.19)

holds for a certain ¢ € N. Then (1.24) holds and similarly

Mt (J°(9)) = —prsig + > hyjn9” (5.20)

v=2

Let J, = D+ gB;, J7 = D° + gB; be constructed similarly as before. Then it suffices
to show

I1;(Bi(g) — B (9))L; = 0. (5.21)
Indeed, (5.21) implies B; (9) = §f (9) and Lemma 5.3 ensures
Mt (T(9)) = Mt (J°(9)) = O(g* ) for j=0, 1,

hence cx1j,, = ¢p,;, holds if v < 2i+ 1.
It remains to prove that (5.19) implies (5.21). Using induction we will prove that

IL,(J; — JO)I; = 0 (5.22)

holds for I =0, ...,4. Since Jy = J and J§ = J°, (5.22) holds for | = 0 due to (5.19).
Let us assume that (5.22) holds for a certain [ < ¢ — 1. Then

I0,(B, — BY)IL; = 0 (5.23)
follows from (5.22) due to B; — By = g~ (J; — J;). Moreover, using (5.23) and
R — R = B, — B — Iy(B, — BY)Iy — 1T, (B, — BY)IL, (5.24)
we get II;(R; — Ry)II; = 0. Therefore Lemma 5.4 and [ < ¢ — 1 ensure
R, — R} =141 (R; — R))Ij4q = I I, ( Ry — RY)ILIL . =0,

hence R; = R} and consequently @; = Q7. Moreover | < 7 — 1 implies that the
operators €99 = 99 commute with II;, hence

Hi(JlJrl — JloJrl)Hi — e_nglHi(Jl o JlO)Hiengl _ 07

i.e. (5.22) holds for I 4+ 1 if I <4 —1. Thus (5.22) holds for I = 1,...,4 and using (5.22)
with | = ¢ we get (5.21), completing the proof of Proposition 5.1.
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6. PROOF OF THEOREM 1.2 AND 1.3

6.1. INTRODUCTION

In this section we show how to deduce Theorem 1.2 and 1.3 from finite dimensional
results proved earlier. In both cases we use the min-max principle and deduce the
estimates for coefficients of the Taylor series using a finite dimensional block and
Proposition 5.1. For this reason we assume g € R.

Our approach uses the operators J," (g) and J,, (g) € £(C"), given by the formula

T (g) == diag(d))j_; + 9By, (6.1)

where E: , E; are the following tridiagonal matrices

Y, by 0 0
by b, by
0 by b
Bf = - (6.2)
!4 bas 0 0
bz b, 5 bp_o 0
0 bn—2 b/n 1 bn—l
0 0 0 by b, by

In order to prove Theorem 1.2 we show that Ax(J(g)) is well approximated by \x(JE(g))
for large n. In order to prove Theorem 1.3 we show moreover that Agy1(J(g)) is well
approximated by A1 1(J:F(g)) for large n.

6.2. AUXILIARY OPERATOR INEQUALITY
Lemma 6.1. Let B° be the linear map defined on (3 by the formula

B°e; = bjei1 +b;_jei1, (6.3)
where (b9)22, are real and by convention b;_, =0 if i = 1. Then for x € (% one has
+(x, B°x) < (x, diag(|b7| + [b7_1[)i2,17). (6.4)
Proof. If x = ()52, then
B°x = (bjxj1 +b]_175-1)724
and
(xz, B°x) Zb Tjp1; +Zbl 1Zi—1T;. (6.5)

Writing ¢ = j + 1 in (6.5), we can estimate |(x, B°z)| by

S 202 ezl < S0 1B + 2 ) (6.6)

J J
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To complete the proof we write the right hand side of (6.6) in the form
DSl + Y [0Sl = D (105 ] + [b5) s (6.7)
i J J
and observe that the quantity (6.7) is equal to the right hand side of (6.4). O

6.3. APPLYING THE MIN-MAX PRINCIPLE

Notation 6.2. If L is a self-adjoint, bounded from below operator with discrete
spectrum, then (A;(L))$2, denotes the sequence of eigenvalues of L, enumerated in

non-decreasing order, counting multiplicities, i.e. Xl(L) < /):2(_[/) <...

Let n € N be fixed large enough. We decompose b; = by, ; + b}, ;, b; = b, ; + b7,
where the sequences (b, )2, (b}, ;)72 are the cut-off given by

bni: b lfl<n7 and b;Li: b; 1fl§n7
’ 0 ifi>n ’ 0 ifi>n.
Consequently B = B,, + B; holds if the operators B,,, B, are given by
Bpei = by, e + bpi€iy1 +bpi1ei1,  Bhei = b6 +b) e +b5 €1

and Lemma 6.1 ensures
(2, Bya) < (v, Dja), (6.8)

where we denoted Dj, := diag(dy,, )ien« with

0 if 1 < n,
di =19 1lbn| ifi=n,
g ifi>n

and 3 = |b| + |b;| + |bi—1|- Next we consider
Ji(9) = D+ gBn + gD;; = J(g) & diag(di + 95)7 41, (6.9)

where fni(g) is the linear map acting on span{ej,...,e,} by means of the
matrix (6.2).
If i >n > k+1 and p satisfies (1.19), then pB; < 1d; and

di £ g8 > 3d; if —p<g<p, (6.10)

hence J*(g) are self-adjoint, bounded from below and have discrete spectrum. Moreover

(2, J, (9)z) < (z,J(9)x) < (x, ], (9)x) if g >0, (6.11)
(z, Jf (9)x) < (x,J(9)x) < (x, ], (9)x) ifg<0
and the min-max principle ensures
il (9)) < Xl (9) < XilJf () if g >0, 612)
Ai(F(9) < Xi(J(9) < N, () ifg<0 '
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6.4. END OF THE PROOF OF THEOREM 1.3

Let us fix p > 0 satisfying (1.19)—(1.21) and assume that n > k + 2. We claim that
J: *(g) satisfies the assumptions of Proposition 4.1 for the same value p. Indeed, the
entries of J¥(g) are the same as the entries of .J(g) except the fact that b/, is replaced
by b/, & |by|, b; are replaced by 0 for i > n and b, are replaced by 0 for ¢ > n. Thus
the values of /3] can only decrease after these modifications and the right hand side of
(1.19) can only increase. Applying Proposition 4.1 to jf (g9) we obtain

(=20, 2011.0) N 0 (T (9)) = {0 (9))s Ma (T (9)) )4 (6.13)
where the eigenvalue )\kﬂ-(fff (g9)) is simple if —p < g < p, g # 0, and satisfies
Ners (TE(G)) = —tunssg + 3y " (6.14)
v=2
with |cf+j7n,y| < pugp'™¥ for j =0, 1. We observe that (6.9) ensures
(i (9)) = o(J (9) ULdi £ gB;: i > n}. (6.15)

Let ng be such that d; > 0 for ¢ > ny and assume n > ng. Then (1.19) ensures
2ppr < d;i — pP for i > n and

[—2up, 2pxp) N o (TiE(9)) = [—2unp. 2pp) N 0 (T (9)), (6.16)

hence (1.22)-(1.23) hold with J(g) instead of J(g) and Mgy (JE(9)) = Arri (JE(g))
for j =0,1. Let us fix 0 < g < p. Using (1.22)-(1.23) with J;/ instead of J, we get

N1 () < =20 < NI <0< Nyt (IH) < 200 < Nga (JF), (6.17)

where | € N* is such that A,(J7(g)) = A(JF(g)) and due to the continuity of
g — N(JF(g)), one has [ = 1+ card{i € N*: d; < dj}. Similarly

No1(J7) < =2pp < N(JT) <0 < Nyt (J7) < 2pp < N2 (J7). (6.18)
Thus A\t (JE(9)) = )\ZH(J (g9)) for j =0, 1, and
No1(J) < =2ppe < N(J) <0 < Agr (J) < 200 < Mg (J) (6.19)

)
follows from (6.12). Us 1ng (6.19) we obtain (1.22)—(1.23) with A\gy;(J(g)) = Xl+j(J(g))
for j =0, 1, and (6.14) ensures

Mot (T(9)) < Mo (T (9)) < —pgg+ D 69" +COnlgN T, (6.20)
2<v<N

Mers (7(9)) = M (T (9) = —prrjg+ D Crajnnd” —CnlgM™ (6.21)
2<v<N

for 5 =0, 1.
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We observe that Proposition 5.1 applied to j;f and j; give

n>k+v = cf,, = (6.22)

Chtijny

due to the fact that Hl(j;[ - j,j)l_[l = 0 holds if £k + 1 4+ < n. Therefore taking
n >k + N in (6.20)—(6.21) we obtain

MNeri(J(9)) = —perig + D ¢fyin,g” +O0(gN ). (6.23)
2<y<N

Since Proposition 4.1 ensures |¢;7, ;. | < pgp' ™", we find that for every N € N*,

Meri(J(9) = —prrig + D ckrjwg” +O(glN ) (6.24)
2<U<N

holds with |cg4j.| < prp ™. Similar inequalities can be written when —p < g < 0.
Thus g — Ak+;(J(g)) is real analytic, its convergence radius is greater or equal p and
the remainder estimates (1.25) follow as in the proof of Lemma 2.3.

6.5. END OF THE PROOF OF THEOREM 1.2

If p satisfies (1.7), then (6.10) should be replaced by the fact that one can choose
a constant C' = C(p) large enough to ensure

where ¢ = ¢(p) > 0 and g € [—p, p]. It remains to fix ng € N large enough and use
a similar reasoning under the additional assumption that n > ng.

7. COMPUTATIONS OF COEFFICIENTS

7.1. INTRODUCTION
To begin we recall well known situation of matrices 2 x 2.
Notation 7.1.

(a) Further on we denote d(g) := d; + gb.
(b) We denote by d}(g), d},1(g) the eigenvalues of

oy (d(g)  gbi(g)
Ailg) = (gbi(g) d?H(g))' (1)

cost —sin t)

(¢) For t € R we denote () := <sint cost
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If d; # di41 then df(g) # dY,,(g) holds for small |g| and the direct calculation
gives

df(g) = d?(g) —7i(9), (72)
d}+1(9) = d?+1(9) +7i(9)
with 22 i
g-9; g9 6
ri(g) = - +O(g°). (7.3)
9= B - @) - B
Moreover
U(g8i(9))Ai(g9)U(gb:(g)) " = diag(d; (9), dj11(9)) (7.4)
holds with ) 90h
gY;
0; (= —arctan ( ——F———). 7.5
)= g oretan (G~ ) 79
Using arctant = sint + O(t3) =t + O(t®) and cost = 1 — % + O(t*), we obtain
6.(9) 4 0(g?) (7.6)
i(9) = S5 ; :
di(g) — df;,(9)
) gb; 3
sin(g6i(9)) = 50— + 0(9°), (7.7)
W09) = B -t )
(90:(9)) = 1 i 0(g") (79)
cos(gbli(g)) =1— L + O(g%). .
2(d7(g) — d},1(9))?
7.2. PROOF OF THEOREM 1.5
We consider the first similarity transformation using
c —s 0 O
iggo _ | ¢ 0 0
e — O O C —S @ IV1L7 (7.9)
0O 0 s ¢
where
s(g) == sin (g0k-1(9)))), c(g) := cos (90k-1(9))), (7.10)
$(g) ==sin (90r+1(9))), ¢&(g) := cos (g0k41(9))) (7.11)

with 6;(g) given by (7.5). The corresponding similarity transformation allows us to
diagonalize the blocks Ax_1(g) and Ag+1(g). Indeed, the direct calculation shows that
the matrix J;(g) = e 1990(9) J(g)e'9Q0(9) equals

d%—z gbi_sc —gbi_ss 0 0 0
* d2—1 — Th_1 0 gbrsé —gbyss 0
* * d% 4+ rp_1 gbrcé —gbics 0 (7.12)
* * * dy oy — e 0 gbraos |’ ’
* * * * d2+2 + 71 gbr4oC
* * * * d2+3
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where the stars correspond to the symmetric entries and we have not written the terms
which are the same as in J(g). Then J1(g) = D + g(B1 @ By + R;) holds with

0 0 —gbr_os 0 0 0
* 0 0 gbysé 0 0
R 0 0 —gbics 0
ghi(g) = |, . 0 0 ghrias ® Oy (7.13)
* ok * * 0 0
* ok * * * 0
and 0
~ d0 +rp_q gby.cé 1 4
B =k . =gB o , 7.14
9B1(9) ( ghece  dD, — iy ) = 9BR9) +O(5) (7.14)

where Bj}(g) is given by (1.33). Indeed, if B,lw by, b;1€+1 are given by (1.30)—(1.32), then
using (7.8) we find bycé = bl + O(g?) and using (7.3) we find df +r,_1 = gbt + O(g*),
dy .y — rhe1 = gbpq + O(g*). Due to (7.14) the difference between eigenvalues of

gﬁl(g) and gBji(g) is O(g*) and Theorem 1.5 follows from (5.8) with [ = 1.
(iii) Let gRy be given by (7.13) and @)1 obtained from (3.12). Then (5.9) gives

Jo = Ji +[D,igQ1] + [9(B1 ® By + Ry),igQ1] + (D, 19@1],i9Q1] + O(¢°)
due to Ry = O(g) and Q1 = O(g). Moreover [D,igQ1] = —gR; allows us to simplify
Jo =D+ g(B1 & By) + [g(B1 & B1),igQ1] + $l9R1,igQ1] + O(g°)

and By — B; depends only on 1lgR1,igQ1]) + O(g®) due to (5.10). Finally we find that

9Ba(9) = (dg +;§;Cz+pk @, _iiicf+ pk+1> +0(g°) (7.15)

holds with
pr = (ex, 2[gR1,igQ1ler) = —g*s*b_y/dp—2 — g*$°b} /dyi2, (7.16)
Pt = (ert1, 3[gR1, igQ1]ens1) = —g°s°b; Jdi—1 — §° 57V o/ diy3. (7.17)

Then (5.8) ensures A4, (J(g)) = Aj2(g) + O(g%), where {)\;2(g)} ;0,1 are the eigen-
values of gBs and using (7.15)—(7.17) we obtain \;2(g) with the error O(g®).

7.3. PROOF OF THEOREM 1.4

Let J(g) be as in Theorem 1.4. We apply the approach of Section 3 in the case n = 1.
Consider first the case when b, = 0 for all . Under this assumption we can check by
induction that the functions g — (e;, Ji(g)e;) are even when ¢ — j is even and odd
when i — j is odd. Since A\ (J(g)) = (ex, Ji(g)er) +O(g?), it is clear that g — \,(J(g))
is even. Further on we consider a general case.
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Notation 7.2.

(a) We write df(g) := d; + gb} and recall the assumption d = 0.
(b) For I € N we denote V; := span{eyy;}_i<j<i and V := Vy = Cey,.

We begin by diagonalizing A;_1(g) (see Notation 7.1). For this purpose we use

c —s 0
Ulg)==|s ¢ 0] &l
0 0 1

with ¢ and s given by (7.10). Then U(g)~*J(g)U(g) equals

dy_, gbp_oc —gbi_as 0
* dY | — 1R 0 gbys (7.18)
* * Th_1 gby.c
* * * dgﬂ
and using d(g) = 0 in (7.3) we get
272 434
9°bj_4 g by 6
Te-1(9) = — +0(g"). (7.19)
dy_i(9)  dy_i(9)®
. . . .. Tk—1 gbkc .
The next step consists in diagonalizing the block w0 using
k+1
) 10 0
Ulg) =0 & —5| @Iy, (7.20)
0§ ¢
where we denoted ¢ := cos(gf), § := sin(gf) with
. 1 2gbi.c(g) br 2
6 := — arctan ( ) =-— + O(g). (7.21)
2g re—1(g9) — d%—&-l(g) d2+1(9)
Then we find that J; := U~ 1U~1JUU has the form
d%_Q gbg_oc —gbi_2s¢  gbg_os§ 0
* d2—1 — Th_1 gbrss gbrsé 0
* * Tk—1 — Fk; 0 gbk+1§ (722)
* * * d%_,_l + 75 gbri1é
* * * * d2+2
with 252 2 Apd A
~ 9 ¢ 9 9¢ 6
k(g) = - +0(g°) (7.23)
Ay — e (dRgg —7Te-1)?

We claim that the quantity (7.23) can be written in the form
9°; g'bebi_y g bEbE g'bi

- - — 6
B (g) 4 () (92 dY (92d0_\(9) dY,(9) +0(g°). (7.24)
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Indeed, using (7.19) and ¢ =1 — g%67_, + O(g*), we get

c? 1—g*(br—1/d)_,)* + O(g*)

d2+1 —Tk-1 d2+1 + 92[’%71/6@71 +O(g*)

1 < gbk_1>2 9?7y ) 4
= 1- - +0(9")
A1 ( dp_y . dy

and multiplying this expression by gzbi we get the first three terms of (7.24).
Let us denote d, 1 := r;—1 — 7. Then reasoning similarly as before we can use two
rotations to diagonalize the blocks

<d2_2 —gbk285> and <dk,1 gbk+1§>.
* di1 * dRyo

This similarity gives Jo = D + gBy with By = (dj.2) ® Ba + Ry and

2;2 2.2 212 2

g7bj_os7C 9 bp 48 6
dyo = di + — +0(g%).
? ! A,y — dg—Q d2+2 —dia &)

Using s = gfr_1 + O(g?), (7.21) and di 1 = O(g?), we get

_ 9" _1b% o B g'bEb% 1
d271(9)2d272<9) d2+1(9)2d2+2<9)
If we express dj 1 := 1,1 — 7% using (7.19) and (7.24), we find that the quantity (7.25)

gives the right hand side of (1.28). To complete the proof it remains to observe that
llgR2(g9)|| = O(g?) ensures

dio =dg

2]

+ 0(g%). (7.25)

Me(J(9)) = di2(9) + O(g°)

either by the usual Kato—Temple estimate or by repeating the proof of Lemma 5.3 in
this case.
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