PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of nitrogen in carrier confinement potential engineering and optical properties of GaAs-based quantum wells heterostructures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the authors present the results of optical characterization of GaAs-based multiple quantum well heterostructures, together with energy band structure analysis. The optical properties were investigated by applying photoluminescence spectroscopy. Structures with GaInNAs, GaInAs and GaNAs multiple quantum wells emitting around 1 μm, grown by atmospheric pressure metalorganic vapor phase epitaxy, were compared in this work. The role of nitrogen in quantum well carriers confinement potential was analysed. The photoluminescence intensities of the samples were correlated with the analysis of energy band structures and the overlaps of the carriers’ wave functions. In addition, the main carrier activation energies were estimated based on photoluminescence temperature dependence and the Arrhenius plots analysis. It was deduced that the thermal photoluminescence decay is most probably related to the escape of electrons whereas the holes, independently of the potential well depth, are additionally confined by the local inhomogeneities or by the Coulomb interaction with the confined electrons.
Czasopismo
Rocznik
Strony
255--263
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
Bibliografia
  • [1] JASCHKE G., AVERBECK R., GEELHAAR L., RIECHERT H., Low threshold InGaAsN/GaAs lasers beyond 1500 nm, Journal of Crystal Growth 278(1–4), 2005, pp. 224–228.
  • [2] ISHIKAWA F., TRAMPERT A., PLOOG K.H., Low substrate temperature and low As-pressure growth concept for the molecular beam epitaxial growth of 1.55 μ m (Ga,In)(N,As) multiple quantum wells, Journal of Crystal Growth 301–302, 2007, pp. 529–533.
  • [3] BANK S.R., BAE H., GODDARD L.L., YUEN H.B., WISTEY M.A., KUDRAWIEC R., HARRIS J.S., Recent progress on 1.55-μ m dilute-nitride lasers, IEEE Journal of Quantum Electronics 43(9), 2007, pp. 773–785.
  • [4] GUPTA J.A., SPROULE G.I., WU X., WASILEWSKI Z.R., Molecular beam epitaxy growth of 1.55 μm GaInNAs(Sb) double quantum wells with bright and narrow photoluminescence, Journal of Crystal Growth 291(1), 2006, pp. 86–93.
  • [5] NIU Z.C., ZHANG S.Y., NI H.Q., WU D.H., ZHAO H., PENG H.L., XU Y.Q., LI S.Y., HE Z.H., REN Z.W., HAN Q., YANG X.H., DU Y., WU R.H., GaAs-based room-temperature continuous-wave 1.59 μm GaInNAsSb single-quantum-well laser diode grown by molecular-beam epitaxy, Applied Physics Letters 87(23), 2005, article 231121.
  • [6] BISPING D., PUCICKI D., FISCHER M., KOETH J., ZIMMERMANN C., WEINMANN P., HOEFLING S., KAMP M., FORCHEL A., GaInNAs-based high-power and tapered laser diodes for pumping applications, IEEE Journal of Selected Topics in Quantum Electronics 15(3), 2009, pp. 968–972
  • [7] RYCZKO K., SĘK G., MISIEWICZ J., LANGER F., HÖFLING S., KAMP M., On the oscillator strength in dilute nitride quantum wells on GaAs, Journal of Applied Physics 111(12), 2012, article 123503.
  • [8] DIRAC P.A.M., The quantum theory of the emission and absorption of radiation, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 114(767), 1927, pp. 243–265.
  • [9] ALBO A., BAHIR G., FEKETE D., Improved hole confinement in GaInAsN-GaAsSbN thin double-layer quantum-well structure for telecom-wavelength lasers, Journal of Applied Physics 108(9), 2010, article 093116.
  • [10] TANSU N., YEH J.-Y., MAWST L.J., Experimental evidence of carrier leakage in InGaAsN quantum-well lasers, Applied Physics Letters 83(11), 2003, pp. 2112–2114.
  • [11] PUCICKI D., BIELAK K., KUDRAWIEC R., RADZIEWICZ D., ŚCIANA B., Determination of indium and nitrogen contents of InGaAsN quantum wells by HRXRD study supported by BAC calculation of the measured energy gap, Materials Science – Poland 31(4), 2013, pp. 489–494.
  • [12] BISPING D., HOEFLING S., PUCICKI D., FISCHER M., FORCHEL A., Room-temperature singlemode continuous- wave operation of distributed feedback GaInNAs laser diode at 1.5 μm, Electronics Letters 44(12), 2008, pp. 737–738.
  • [13] KUDRAWIEC R., MOTYKA M., ANDRZEJEWSKI J., MISIEWICZ J., GOLLUB D., FORCHEL A., Photoreflectance and photoluminescence study of step-like GaInNAs/GaInNAs/GaAs quantum wells, IEE Proceedings – Optoelectronics 151(5), 2004, pp. 313–316.
  • [14] PUCICKI D., BIELAK K., ŚCIANA B., RADZIEWICZ D., LATKOWSKA-BARANOWSKA M., KOVÁČ J., VINCZE A., TŁACZAŁA M., Determination of composition of nonhomogeneous GaInNAs layers, Journal of Crystal Growth 433, 2016, pp. 105–113.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7d57bd4-54ca-4f9a-9ce4-0a250e0f503e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.