PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Planning of green roofs for the best thermotechnical effect

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The energy-efficient provision of indoor comfort for buildings is one of the most important requirements for modern construction. The greening of buildings is a natural measure to achieve this, for which the most limiting factor is the lack of systematic research on its positive effects. At the Kyiv National University of Construction and Architecture, a series of research on thermotechnical benefits and gas exchange in plant layers has been performed. The cooling effect of plants is up to 4 K. Semi-intensive green roofs on rooms have paths, which absorb solar radiation and load the air-conditioning systems. The proposed solution is to build the paths on the auxiliary premises with low microclimate requirements. The work aims to estimate the heat distribution in green roofs with paths to test the recommendation. Simulation using the Fourier–Kirchhoff equation shows that the path has a trace of higher heat transfer on the ceiling up to an additional 1.8‒2.0 W·m−2. Thus, aligning the paths above the auxiliary premises is recommended, if possible. A better solution is to allow planting of the paths. Using plant-permit pavements and barefoot-in-dew systems such as ZinCo Soft Landscape are examples of such solutions. It is necessary to use grass that can be walked on.
Słowa kluczowe
Rocznik
Strony
42--54
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
  • Kyiv National University of Construction and Architecture, Faculty of Engineering Systems and Ecology, Ukraine
autor
  • Czestochowa University of Technology, Building Faculty, Poland
  • Kyiv National University of Construction and Architecture, Faculty of Engineering Systems and Ecology, Ukraine
  • Kyiv National University of Construction and Architecture, Faculty of Engineering Systems and Ecology, Ukraine
autor
  • University of Applied Sciences in Nysa, Faculty of Technical Sciences, Poland
  • Kyiv National University of Construction and Architecture, Faculty of Architecture, Ukraine
  • Kyiv National University of Construction and Architecture, Faculty of Engineering Systems and Ecology, Ukraine
Bibliografia
  • Alsayah, A. M., Faraj, J. J., & Eidan, A. A. (2024). A review of recent studies of both heat pipe and evaporative cooling in passive heat recovery. Open Engineering, 14(1), 1-18. https://doi.org/10.1515/eng-2024-0012
  • Bari, M. A., Münsch, M., Schöneberger, B., Schlagbauer, B., Tiu, A. A., & Wierschem, A. (2024). Heat recovery optimization of a shell and tube bundle heat exchanger with continuous helical baffles for air ventilation systems. International Journal of Air-Conditioning and Refrigeration, 32(2), 1‒16. https://doi.org/10.1007/s44189-023-00046-4
  • Berg, A. (1989). Norske tømmerhus frå mellomalderen. Vol. 1. Landbruksforlaget.
  • Brunoro, S. (2024). Passive envelope measures for improving energy efficiency in the energy retrofit of buildings in Italy. Buildings, 14(7), 2128. https://doi.org/10.3390/buildings1407212
  • Chen, H., Ma, J., Wang, X., Xu, P., Zheng, S., & Zhao, Y. (2018). Effects of biochar and sludge on carbon storage of urban green roofs. Forests, 9(7), 413. https://doi.org/10.3390/f9070413
  • Chen, Y., Zheng, B., & Hu, Y. (2020). Numerical simulation of local climate zone cooling achieved through modification of trees, albedo and green roofs – a case study of Changsha, China. Sustainability, 12(7), 2752. https://doi.org/10.3390/su12072752
  • Cholewa, T., Balen, I., & Siuta-Olcha, A. (2018). On the influence of local and zonal hydraulic balancing of heating system on energy savings in existing buildings – Long term experimental research. Energy and Buildings, 179, 156‒164. https://doi.org/10.1016/j.enbuild.2018.09.009
  • Corcoran, L., & Duffy, A. (2019). Experimental field-trial design to investigate the effects of a defective internal vapour layer on timber frame wall constructions including initial findings. MATEC Web of Conferences, 282, 02047. https://doi.org/10.1051/matecconf/201928202047
  • Fallmann, J., Emeis, S., & Suppan, P. (2014). Mitigation of urban heat stress – a modelling case study for the area of Stuttgart. Journal of the Geographical Society of Berlin, 144(3‒4), 202‒216. https://doi.org/10.12854/erde-144-15
  • Fareniuk, H., Kolesnyk, E., Fareniuk, Ye., Pavliuk, P., Bilous, O., Prishchenko, A., & Tymofeiev, M. (2014). Methods for choosing of insulation material for insulation of buildings (DSTUB V.2.6-189:2013). Minrehion Ukrainy. https://eurobud.ua/wp-content/uploads/2022/08/dstu-b-v.2.6-189-2013-metody-vyboru-teploizolyaczijnogo-materialu-dlya-uteplennya-budivel.pdf
  • Gill, A. S., Purnell, K., Palmer, M. I., Stein, J., & McGuire, K. L. (2020). Microbial composition and functional diversity differ across urban green infrastructure types. Frontiers in Microbiology, 11, 912. https://doi.org/10.3389/fmicb.2020.00912
  • Gioannini, R., Al-Ajlouni, M., Kile, R., VanLeeuwen, D., & St. Hilaire, R. (2018). Plant communities suitable for green roofs in arid regions. Sustainability, 10(6), 1755. https://doi.org/10.3390/su10061755
  • Gładyszewska-Fiedoruk, K., Zhelykh, V., & Pushchinskyi, A. (2019). Simulation and analysis of various ventilation systems given in an example in the same school of indoor air quality. Energies, 12(15), 2845. https://doi.org/10.3390/en12152845
  • Hlushchenko, R., Tkachenko, T., Mileikovskyi, V., Kravets, V., & Tkachenko, O. (2022). “Green structures” for effective rainwater management on roads. Production Engineering Archives, 28(4), 295–299. https://doi.org/10.30657/pea.2022.28.37
  • Hojny, M., Głowacki, M., Bała, P., Bednarczyk, W., & Zalecki, W. (2023). Multiscale model of heating-remelting-cooling in the Gleeble 3800 thermo-mechanical simulator system. Archives of Metallurgy and Materials, 64(1), 401‒412. https://doi.org/10.24425/amm.2019.126266
  • Kim, H., & Cho, Y. (2022). Optimization of supply air flow and temperature for VAV terminal unit by artificial neural network. Case Studies in Thermal Engineering, 40, 102511. https://doi.org/10.1016/j.csite.2022.102511
  • Kravchenko, M., Trach, Y., Trach, R., Tkachenko, T., & Mileikovskyi, V. (2024). Improving the efficiency and environmental friendliness of urban stormwater management by enhancing the water filtration model in rain gardens. Water, 16(10), 1316. https://doi.org/10.3390/w16101316
  • Kuhnhenne, M., Reger, V., Pyschny, D., & Döring, B. (2020). Influence of airtightness of steel sandwich panel joints on heat losses. E3S Web of Conferences, 172, 05008. https://doi.org/10.1051/e3sconf/202017205008
  • Luthfiyyah, D. N., & Widjajanti, R. (2019). Green Roof to Overcome Urban Heat Island Effects in the Center of Semarang. E3S Web of Conferences, 125, 07018. https://doi.org/10.1051/e3sconf/201912507018
  • Muñoz-Viveros, C., Pérez-Fargallo, A., & Rubio-Bellido, C. (2022). Influence of the type of solar protection on thermal and light performance in classrooms. Energy Reports, 8, 5329‒5340. https://doi.org/10.1016/j.egyr.2022.04.007
  • Nassif, N., Tahmasebi, M., Ridwana, I., & Ebrahimi, P. (2022). New optimal supply air temperature and minimum zone air flow resetting strategies for VAV systems. Buildings, 12(3), 348. https://doi.org/10.3390/buildings12030348
  • Nwankwo, M., Meng, Q., Yang, D., & Liu, F. (2022). Effects of forest on birdsong and human acoustic perception in urban parks: a case study in Nigeria. Forests, 13(7), 994. https://doi.org/10.3390/f13070994
  • Qiu, G., Li, H., Zhang, Q., Chen, W., Liang, X., & Li, X. (2013). Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. Journal of Integrative Agriculture, 12(8), 1307‒1315. https://doi.org/10.1016/s2095-3119(13)60543-2
  • Rey, C. V., Franco, N., Peyre, G., & Rodríguez, J. P. (2020). Green roof design with engineered extensive substrates and native species to evaluate stormwater runoff and plant establishment in a neotropical mountain climate. Sustainability, 12(16), 6534. https://doi.org/10.3390/su12166534
  • Shapoval, S., Spodyniuk, N., Zhelykh, V., Shepitchak, V., & Shapoval, P. (2021). Application of rooftop solar panels with coolant natural circulation. Pollack Periodica, 16(1), 132‒137. https://doi.org/10.1556/606.2020.00218
  • Shapoval, S., Zhelykh, V., Venhryn, I., & Kozak, K. (2019a). Simulation of thermal processes in the solar collector which is combined with external fence of an energy efficient house. Lecture Notes in Civil Engineering, 47, 510‒517. https://doi.org/10.1007/978-3-030-27011-7_65
  • Shapoval, S., Zhelykh, V., Venhryn, I., Kozak, K., & Krygul, R. (2019b). Theoretical and experimental analysis of solar enclosure as part of energy-efficient house. Eastern-European Journal of Enterprise Technologies, 2(8), 38‒45. https://doi.org/10.15587/1729-4061.2019.160882
  • Štastný, P., Antošová, N., Kalús, D., & Mučková, V. (2024). The importance of using active thermal protection following restoration work on old buildings. Acta Polytechnica, 64(2), 118‒127. https://doi.org/10.14311/ap.2024.64.0118
  • Tkachenko, T., Kravchenko, M., Voloshkina, O., Mileikovskyi, V., Tkachenko, O., & Sipakov, R. (2024a). Evaluating rain-garden bands: filtration properties and implications for urban water management. World Environmental and Water Resources Congress, 2024, 960‒968. https://doi.org/10.1061/9780784485477.085
  • Tkachenko, T., & Mileikovskyi, V. (2018a). Energy efficiency of “Green structures” in cooling period. International Journal of Engineering & Technology, 7(3.2), 453‒457. https://doi.org/10.14419/ijet.v7i3.2.14570
  • Tkachenko, T., & Mileikovskyi, V. (2018b). Geometric basis of the use of “Green constructions” for sun protection of glazing. Advances in Intelligent Systems and Computing, 809, 1096‒1107. https://doi.org/10.1007/978-3-319-95588-9_94
  • Tkachenko, T., & Mileikovskyi, V. (2020a). Methodology of thermal resistance and cooling effect testing of green roofs. Songklanakarin Journal of Science and Technology (SJST), 42(1), 50‒56. https://doi.org/10.14456/sjst-psu.2020.8
  • Tkachenko, T., & Mileikovskyi, V. (2020b). Assessment of light transmission for comfort and energy efficient insolation by “Green Structures.” Advances in Intelligent Systems and Computing, 1296, 139‒151. https://doi.org/10.1007/978-3-030-63403-2_13
  • Tkachenko, T., & Mileikovskyi, V. (2022). Capturing carbon dioxide from human-driven vehicles by green structures for carbon neutrality. IOP Conference Series Earth and Environmental Science, 1111(1), 012056. https://doi.org/10.1088/1755-1315/1111/1/012056
  • Tkachenko, T., Mileikovskyi, V., Kravchenko, M., & Konovaliuk, V. (2023a). Simulation of illumination and wind conditions for green and fed cities using CFD software. IOP Conference Series Earth and Environmental Science, 1275(1), 012014. https://doi.org/10.1088/1755-1315/1275/1/012014
  • Tkachenko, T., Mileikovskyi, V., & Ujma, A. (2019). Field study of air quality improvement by a “Green Roof” in Kyiv. System Safety Human - Technical Facility - Environment, 1(1), 419‒424. https://doi.org/10.2478/czoto-2019-0054
  • Tkachenko, T., Mileikovskyi, V., Ujma, A., & Hajiyev, M. (2024b). Treatment of out-of-context buildings during the restoration of historical territories using green structures. International Journal of Conservation Science, 15(SI), 129-140. https://doi.org/10.36868/ijcs.2024.si.11
  • Tkachenko, T., Voloshkina, O., Mileikovskyi, V., Sipakov, R., Hlushchenko, R., & Tkachenko, O. (2023b). Using rain-garden bands for rainwater drainage from roads. IOP Conference Series: Earth and Environmental Science, 1254, 1207-1214. https://doi.org/10.1061/9780784484852.110
  • Venhryn, I., Shapoval, S., Voznyak, O., Datsko, O., & Gulai, B. (2021). Modelling of optical characteristics of the Thermal Photovoltaic Hybrid Solar Collector. 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine. https://doi.org/10.1109/csit52700.2021.9648738
  • Voznyak, O., Savchenko, O., Spodyniuk, N., Sukholova, I., Kasynets, M., & Dovbush, O. (2022). Improving of ventilation efficiency at air distribution by the swirled air jets. Pollack Periodica, 17(1), 123‒127. https://doi.org/10.1556/606.2021.00419
  • Voznyak, O., Spodyniuk, N., Antypov, I., Dudkiewicz, E., Kasynets, M., Savchenko, O., & Tarasenko, S. (2023). Efficiency improvement of Eco-Friendly solar heat supply system as a building coating. Sustainability, 15(3), 2831. https://doi.org/10.3390/su15032831
  • Voznyak, O., Spodyniuk, N., Savchenko, O., Sukholova, I., & Kasynets, M. (2021). Enhancing energetic and economic efficiency of heating coal mines by infrared heaters. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 104‒109. https://doi.org/10.33271/nvngu/2021-2/104
  • Voznyak, O., Yurkevych, Y., Dovbush, O., & Serediuk, Y. (2019). The influence of chairs and passengers on air velocity in bus passenger compartment. Lecture Notes in Civil Engineering, 47, 518‒525. https://doi.org/10.1007/978-3-030-27011-7_66
  • Zeng, J., Huang, G., Luo, H., Mai, Y., & Wu, H. (2019). First flush of non-point source pollution and hydrological effects of LID in a Guangzhou community. Scientific Reports, 9(1), 13865. https://doi.org/10.1038/s41598-019-50467-8
  • Zhang, J., Zhang, Q., Shuang, S., Cun, Z., Wu, H., & Chen, J. (2021). The Responses of Light Reaction of Photosynthesis to Dynamic Sunflecks in a Typically Shade-Tolerant Species Panax notoginseng. Frontiers in Plant Science, 12, 718981. https://doi.org/10.3389/fpls.2021.718981
  • Zhelykh, V., Kozak, C., & Savchenko, O. (2016). Using of thermosiphon solar collector in an air heating system of passive house. Pollack Periodica, 11(2), 125‒133. https://doi.org/10.1556/606.2016.11.2.11
  • Zhelykh, V., Shapoval, P., Shapoval, S., & Kasynets, M. (2020). Influence of orientation of buildings facades on the level of solar energy supply to them. Lecture Notes in Civil Engineering, 100, 499‒504. https://doi.org/10.1007/978-3-030-57340-9_61
  • ZinCo USA, Inc. (n.d. a). Perennial Garden | ZinCo Green Roof Systems USA. https://zinco-usa.com/systems/perennial-garden
  • ZinCo USA, Inc. (n.d. b). Walkways on roofs and plaza decks | ZinCo Green Roof Systems USA. https://zinco-usa.com/systems/walkways
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7d19c47-647d-4b34-822a-58f96284f751
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.