PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geometrical and mechanical properties of polyamide PA 12 bonds in composite advanced pore morphology (APM) foam structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adhesive bonds have very strong influence on mechanical properties of composite particulate metal foams. This study experimentally investigates for the first time the geometrical and mechanical properties of PA 12 adhesive bonds between spherical advanced pore morphology (APM) elements made of AlSi10 foam. A new experimentation setup for mechanical testing of bonds in APM structures is based on APM element puncturing. The results show that mechanical behaviour of adhesive bonds differs much from the basic mechanical behaviour of adhesive. Two different bond failure modes are identified, depending on the bond geometry. The geometrical and mechanical results are statistically interpreted for simpler representation, applicability, and modelling of bonds in APM composites in the future.
Rocznik
Strony
1198--1206
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
autor
  • Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
autor
  • Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
  • Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
autor
  • Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
Bibliografia
  • [1] K. Stöbener, J. Baumeister, G. Rausch, M. Rausch, Forming metal foams by simpler methods for cheaper solutions, Met. Powder Rep. 60 (2005) 12–16. , http://dx.doi.org/10.1016/s0026-0657(05)00316-4.
  • [2] K. Stöbener, D. Lehmhus, M. Avalle, L. Peroni, M. Busse, Aluminum foam-polymer hybrid structures (APM aluminium foam) in compression testing, Int. J. Solids Struct. 45 (2008) 5627–5641. , http://dx.doi.org/10.1016/j.ijsolstr.2008.06.007.
  • [3] I. Duarte, M. Vesenjak, L. Krstulović-Opara, Z. Ren, Static and dynamic axial crush performance of in-situ foam-filled tubes, Compos. Struct. 124 (2015) 128–139. , http://dx.doi.org/10.1016/j.compstruct.2015.01.014.
  • [4] I. Duarte, M. Vesenjak, L. Krstulović-Opara, Dynamic and quasi-static bending behaviour of thin-walled aluminium tubes filled with aluminium foam, Compos. Struct. 109 (2014) 48–56. , http://dx.doi.org/10.1016/j.compstruct.2013.10.040.
  • [5] K. Stöbener, G. Rausch, Aluminium foam–polimer composites: processing and characteristics, J. Mater. Sci. 44 (2009) 1506–1511. , http://dx.doi.org/10.1007/s10853-008-2786-8.
  • [6] E.D.I. Reese, Biegequerträgeranordnung für einen Kraftwagen und Verfahren zu dessen Herstellung, 2010.
  • [7] E.D.I. Reese, Strukturbauteil sowie Verfahren zum Herstellen eines Strukturbauteils, 2011 http://www.google.com/patents/DE102009035777A1cl=de.
  • [8] J. Hohe, V. Hardenacke, V. Fascio, Y. Girard, J. Baumeister, K. Stöbener, J. Weise, D. Lehmhus, S. Pattofatto, H. Zeng, H. Zhao, V. Calbucci, F. Rustichelli, F. Fiori, Numerical and experimental design of graded cellular sandwich cores for multi-functional aerospace applications, Mater. Des. 39 (2012) 20–32. , http://dx.doi.org/10.1016/j.matdes.2012.01.043.
  • [9] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46 (2001) 559–632. , http://dx.doi.org/10.1016/S0079-6425(00)00002-5.
  • [10] T. Buschjohann, H. Kauert, Achsträger, insbesondere Vorderachsträger für Kraftfahrzeuge, 2012.
  • [11] T. Buschjohann, H. Kauert, Axle support, in particular front axle support for motor vehicles, 2013 https://www.google. com/patents/US20130168939.
  • [12] T. Buschjohann, H. Kauert, Axle support, in particular front axle support for motor vehicles, 2015 https://www.google. com/patents/US8925942.
  • [13] G. Cazzola, E.A. Razio, F. Izquierdo, Study of the Bendig response of metal foam-filled beams applied to enhance the rollover behaviour of coach structures, Int. J. Crashworthiness 18 (2013) 620–632.
  • [14] J. Baumeister, M. Monno, M. Goletti, V. Mussi, J. Weise, Dynamic behavior of hybrid APM (advanced pore morphology foam) and aluminum foam filled structures, Metals (Basel) 2 (2012) 211.
  • [15] I. Duarte, M. Vesenjak, L. Krstulović-Opara, Z. Ren, Compressive performance evaluation of APM (Advanced Pore Morphology) foam filled tubes, Compos. Struct. 134 (2015) 409–420. , http://dx.doi.org/10.1016/j.compstruct.2015.08.097.
  • [16] D. Lehmhus, J. Baumeister, L. Stutz, E. Schneider, K. Stöbener, M. Avalle, L. Peroni, M. Peroni, Mechanical characterization of particulate aluminum foams-strain-rate, density and matrix alloy versus adhesive effects, Adv. Eng. Mater. 12 (2010) 596–603. , http://dx.doi.org/10.1002/adem.200900315.
  • [17] M.A. Sulong, M. Vesenjak, I.V. Belova, G.E. Murch, T. Fiedler, Compressive properties of Advanced Pore Morphology (APM) foam elements, Mater. Sci. Eng. A 607 (2014) 498–504. , http://dx.doi.org/10.1016/j.msea.2014.04.037.
  • [18] M. Vesenjak, F. Gacnik, L. Krstulovic-Opara, Z. Ren, Mechanical properties of advanced pore morphology foam elements, Mech. Adv. Mater. Struct. 22 (2015) 359–366. , http://dx.doi.org/10.1080/15376494.2012.736059.
  • [19] T. Fiedler, M.A. Sulong, M. Vesenjak, Y. Higa, I.V. Belova, A. Öchsner, G.E. Murch, Determination of the thermal conductivity of periodic APM foam models, Int. J. Heat Mass Transfer 73 (2014) 826–833. , http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.02.056.
  • [20] M. Ulbin, M. Borovinsek, Y. Higa, K. Shimojima, M. Vesenjak, Z. Ren, Internal structure characterization of AlSi7 and AlSi10 advanced pore morphology (APM) foam elements, Mater. Lett. 136 (2014) 416–419. , http://dx.doi.org/10.1016/j.matlet.2014.08.056.
  • [21] M. Vesenjak, M. Borovinsek, T. Fiedler, Y. Higa, Z. Ren, Structural characterisation of advanced pore morphology (APM) foam elements, Mater. Lett. 110 (2013) 201–203. , http://dx.doi.org/10.1016/j.matlet.2013.08.026.
  • [22] M. Vesenjak, F. Gacnik, L. Krstulovic-Opara, Z. Ren, Behavior of composite advanced pore morphology foam, J. Compos. Mater. 45 (2011) 2823–2831. , http://dx.doi.org/10.1177/0021998311410489.
  • [23] S.M.H. Hosseini, M. Merkel, A. Öchsner, Influence of the joint shape on the uniaxial mechanical properties of nonhomogeneous bonded perforated hollow sphere structures, Comput. Mater. Sci. 58 (2012) 183–187. , http://dx.doi.org/10.1016/j.commatsci.2012.01.024.
  • [24] M. Vesenjak, Z. Ren, T. Fiedler, A. Öchsner, Impact behavior of composite hollow sphere structures, J. Compos. Mater. 43 (2009) 2491–2505. , http://dx.doi.org/10.1177/0021998309094970.
  • [25] M. Vesenjak, T. Fiedler, Z. Ren, A. Öchsner, Behaviour of syntactic and partial hollow sphere structures under dynamic loading, in: Adv. Eng. Mater., 2008, 185–191. , http://dx.doi.org/10.1002/adem.200700325.
  • [26] L. Aktay, A.F. Johnson, M. Holzapfel, Prediction of impact damage on sandwich composite panels, Comput. Mater. Sci. 32 (2005) 252–260. , http://dx.doi.org/10.1016/j.commatsci.2004.09.044.
  • [27] C. Menna, A. Zinno, D. Asprone, A. Prota, Numerical assessment of the impact behavior of honeycomb sandwich structures, Compos. Struct. 106 (2013) 326–339. , http://dx.doi.org/10.1016/j.compstruct.2013.06.010.
  • [28] L. Liu, H. Wang, Z. Guan, Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading, Compos. Struct. 121 (2015) 304–314. , http://dx.doi.org/10.1016/j.compstruct.2014.11.034.
  • [29] Evonik Industries, VESTOSINT Polyamide 12 Coating Powders, 2004.
  • [30] EN ISO 527-2, Determination of tensile properties of plastics – Test conditions for moulding and extrusion plastics, 1996.
  • [31] N. Aït Hocine, P. Médéric, T. Aubry, Mechanical properties of polyamide-12 layered silicate nanocomposites and their relations with structure, Polym. Test. 27 (2008) 330–339. , http://dx.doi.org/10.1016/j.polymertesting.2007.12.002.
  • [32] ISO 5079:1995, Textile fibres - Determination of breaking force and elongation at break of individual fibres, 1995.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7cf9045-fbb1-4cdc-91d8-a295980253ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.