PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Particle swarm-optimized support vector machines and pre-processing techniques for remaining useful life estimation of bearings

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie maszyn wektorów nośnych zoptymalizowanych metodą roju cząstek oraz technik przetwarzania wstępnego do oceny pozostałego okresu użytkowania łożysk
Języki publikacji
EN
Abstrakty
EN
The useful life time of equipment is an important variable related to system prognosis, and its accurate estimation leads to several competitive advantage in industry. In this paper, Remaining Useful Lifetime (RUL) prediction is estimated by Particle Swarm optimized Support Vector Machines (PSO+SVM) considering two possible pre-processing techniques to improve input quality: Empirical Mode Decomposition (EMD) and Wavelet Transforms (WT). Here, EMD and WT coupled with SVM are used to predict RUL of bearing from the IEEE PHM Challenge 2012 big dataset. Specifically, two cases were analyzed: considering the complete vibration dataset and considering truncated vibration dataset. Finally, predictions provided from models applying both pre-processing techniques are compared against results obtained from PSO+SVM without any pre-processing approach. As conclusion, EMD+SVM presented more accurate predictions and outperformed the other models.
PL
Okres użytkowania sprzętu jest ważną zmienną związaną z prognozowaniem pracy systemu, a możliwość jego dokładnej oceny daje zakładom przemysłowym znaczną przewagę konkurencyjną. W tym artykule pozostały czas pracy (Remaining Useful Life, RUL) szacowano za pomocą maszyn wektorów nośnych zoptymalizowanych rojem cząstek (SVM+PSO) z uwzględnieniem dwóch technik przetwarzania wstępnego pozwalających na poprawę jakości danych wejściowych: empirycznej dekompozycji sygnału (Empirical Mode Decomposition, EMD) oraz transformat falkowych (Wavelet Transforms, WT). W niniejszej pracy, EMD i falki w połączeniu z SVM wykorzystano do prognozowania RUL łożyska ze zbioru danych IEEE PHM Challenge 2012 Big Dataset. W szczególności, przeanalizowano dwa przypadki: uwzględniający kompletny zestaw danych o drganiach oraz drugi, biorący pod uwagę okrojoną wersję tego zbioru. Prognozy otrzymane na podstawie modeli, w których zastosowano obie techniki przetwarzania wstępnego porównano z wynikami uzyskanymi za pomocą PSO + SVM bez wstępnego przetwarzania danych. Wyniki pokazały, że model EMD + SVM generował dokładniejsze prognozy i tym samym przewyższał pozostałe badane modele.
Rocznik
Strony
610--618
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Center for Risk Analysis and Environmental Modeling – CEERMA Department of Production Engineering Universidade Federal de Pernambuco – UFPE Av. Prof. Moraes Rego 1235 – University City Recife – PE – Brazil – 50670-901
  • Department of Production Engineering Universidade Federal de Pernambuco – UFPE Av. Prof. Moraes Rego 1235 – University City Recife – PE – Brazil – 50670-901
  • Center for Risk Analysis and Environmental Modeling – CEERMA Department of Production Engineering Universidade Federal de Pernambuco – UFPE Av. Prof. Moraes Rego 1235 – University City Recife – PE – Brazil – 50670-901
  • marcio@ceerma.org
  • Center for Risk Analysis and Environmental Modeling – CEERMA
  • Center for Risk Analysis and Environmental Modeling – CEERMA Department of Production Engineering Universidade Federal de Pernambuco – UFPE Av. Prof. Moraes Rego 1235 – University City Recife – PE – Brazil – 50670-901
  • Center for Risk Analysis and Environmental Modeling – CEERMA
Bibliografia
  • 1. Allen J. Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Transactions on Acoustics, Speech and Signal Processing 1977; 25(3): 235-238, https://doi.org/10.1109/TASSP.1977.1162950.
  • 2. Ambhore N, Kamble D, Chinchanikar S, Wayal. V. Tool condition monitoring system: A review. Materials Today: Proceedings 2015; 2(4-5):3419-3428, https://doi.org/10.1016/j.matpr.2015.07.317.
  • 3. Bakhoday-Paskyabi M, Valinejad A, Azodi H. D. Numerical solution of regularised long ocean waves using periodised scaling functions. Pramana 2019; 92(5): 71, https://doi.org/10.1007/s12043-019-1726-2.
  • 4. Boškoski P, Gasperin M, Petelin D, Juricic D. Bearing fault prognostics using Rényi entropy based features and Gaussian process models, Mechanical Systems and Signal Processing 2015; 52-53: 327-337, https://doi.org/10.1016/j.ymssp.2014.07.011.
  • 5. Bousdekis A, Magoutas B, Apostolou D. Mentzas G.Review, analysis and synthesis of prognostic-based decision support methods for condition based maintenance. Journal of Intelligent Manufacturing 2015; 29(6) 1303-1316, https://doi.org/10.1007/s10845-015-1179-5.
  • 6. Bratton D. Kennedy J. Defining a Standard for Particle Swarm Optimization. 2007 IEEE Swarm Intelligence Symposium 2007; 120-127, https://doi.org/10.1109/SIS.2007.368035.
  • 7. Chang L, Chung Y, Lin C, Chen J, Kuo C, Chen S. Mechanical Vibration Fault Detection for Turbine Generator Using Frequency Spectral Data and Machine Learning Model : Feasibility Study of Big Data Analysis. Sensors and Materials 2018; 30(4): 821-832, https://doi.org/10.18494/SAM.2018.1783.
  • 8. Chen J, Li Z, Pan J, Chen G, Zi Y, Yuan J, Chen B, He Z. Wavelet transform based on inner product in fault diagnosis of rotating machinery:A review. Mechanical Systems and Signal Processing 2016; 70-71: 1-35, https://doi.org/10.1016/j.ymssp.2015.08.023.
  • 9. Chen X, Ding M, Wang T, Ding M, Wang J, Chen J, Yan J. Analysis and prediction on the cutting process of constrained damping boring bars based on PSO-BP neural network model. Journal of Vibroengineering 2017; 19(2): 878-893, https://doi.org/10.21595/jve.2017.18068.
  • 10. Chun-Lin L. A Tutorial of the Wavelet Transform. Taipei: National Taiwan University, 2010.
  • 11. Daubechies I. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics 1993; 666-669, https://doi.org/10.1137/1.9781611970104.
  • 12. Droguett E, Lins I, Moura M, Zio E, Jacinto C. Variable selection and uncertainty analysis of scale growth rate under pre-salt oil wells conditions using support vector regression. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2014; 229(4): 319-326, https://doi.org/10.1177/1748006X14533105.
  • 13. Eftekhar A, Toumazou C, Drakakis E. M. Empirical Mode Decomposition: Real-Time Implementation and Applications. Journal of Signal Processing Systems 2013; 73(1): 43-58, https://doi.org/10.1007/s11265-012-0726-y.
  • 14. El-Thalji I, Jantunen E. A summary of fault modelling and predictive health monitoring of rolling element bearings. Mechanical Systems and Signal Processing 2015; 60: 252-272, https://doi.org/10.1016/j.ymssp.2015.02.008.
  • 15. Fumeo E, Oneto L, Anguita D. Condition based maintenance in railway transportation systems based on big data streaming analysis. Procedia Computer Science 2015; 53: 437-446, https://doi.org/10.1016/j.procs.2015.07.321.
  • 16. García Nieto P. J, García-Gonzalo E, Sánchez Lasheras F, Juezc de Cos. Hybrid PSO-SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability. Reliability Engineering and System Safety 2015; 138: 219-231, https://doi.org/10.1016/j.ress.2015.02.001.
  • 17. Genovese L. Videau V, Ospici M, Deutsch T, Goedecker S, Méhaut J. Daubechies wavelets for high performance electronic structure calculations: The BigDFT project. Comptes Rendus Mécanique 2011; 339: 149-164, https://doi.org/10.1016/j.crme.2010.12.003.
  • 18. Guohua G, Yu Z, Guanghuang D, Yongzhong Z. Intelligent Fault Identification Based On Wavelet Packet Energy Analysis and SVM. International Conference on Control, Automation, Robotics and Vision 2006; 1(3): 1-5, https://doi.org/10.1109/ICARCV.2006.345306.
  • 19. Huang B, Jin C, Di Y, Lee J. Review of Data-Driven Prognostics and Health Management Techniques: Lessions Learned From Phm Data Challenge Competitions. Machine Failure Prevention Technology 2017.
  • 20. Huang N. E, Shen Z, Long S, Wu M, Shih H, Zheng Q, Yen N, Tung C, Liu H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 1998; 903-995, https://doi.org/10.1098/rspa.1998.0193.
  • 21. Huang N. E, Wu Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics 2008; 46(2): 1-23, https://doi.org/10.1029/2007RG000228.
  • 22. Huang S, Chang J, Huang Q, Chen Y. Monthly streamflow prediction using modified EMD-based support vector machine. Journal of Hydrology 2014; 511: 764-775, https://doi.org/10.1016/j.jhydrol.2014.01.062.
  • 23. Kumar P, Foufoula-Georgiou E. Wavelet analysis for geophysical applications. Reviews of Geophysics 1997; 35(4), https://doi.org/10.1029/97RG00427.
  • 24. Lee J. J, Yun C. B. Damage diagnosis of steel girder bridges using ambient vibration data. Engineering Structures 2006, https://doi.org/10.1016/j.engstruct.2005.10.017.
  • 25. Liao L, Köttig F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Transactions on Reliability 2014, https://doi.org/10.1109/TR.2014.2299152.
  • 26. Lins I, Araujo M, Moura M, Silva M, Droguett E. Prediction of sea surface temperature in the tropical Atlantic by support vector machines. Computational Statistics and Data Analysis 2013; 61: 187-198, https://doi.org/10.1016/j.csda.2012.12.003.
  • 27. Lins I, Moura M, Droguett E. Failure prediction of oil wells by support vector regression with variable selection, hyperparameter tuning and uncertainty analysis. Chemical Engineering Transactions 2013; 33: 817-822.
  • 28. Liu Z, Wang L, Zhang Y, Chen C. A SVM controller for the stable walking of biped robots based on small sample sizes. Applied Soft Computing 2016; 38: 738-753, https://doi.org/10.1016/j.asoc.2015.10.029.
  • 29. Lybeck N, Marble S, Morton B. Validating Prognostic Algorithms: A Case Study Using Comprehensive Bearing Fault Data, Aerospace Conference 2007; 1-9, https://doi.org/10.1109/AERO.2007.352842.
  • 30. Mallat S. A Wavelet Tour of Signal Processing. A Wavelet Tour of Signal Processing 2009.
  • 31. Mallat S. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 1989, https://doi.org/10.1109/34.192463.
  • 32. Mao W, He J, Tang J, Li Y. et al. Predicting remaining useful life of rolling bearings based on deep feature representation and long short-term memory neural network. Advances in Mechanical Engineering 2018; 10(12), https://doi.org/10.1177/1687814018817184.
  • 33. McKee K. K, Forbes G, Mazhar I, Entwistle R, Hodkiewicz M, Howard I. A vibration cavitation sensitivity parameter based on spectral and statistical methods. Expert Systems with Applications 2015; 42(1): 67-78, https://doi.org/10.1016/j.eswa.2014.07.029.
  • 34. Morlet J, Arens G, Fourgeau E, Giardet D. Wave propagation and sampling theory-Part II: Sampling theory and complex waves. Geophysics 1982; 47(2): 222-236, https://doi.org/10.1190/1.1441329.
  • 35. Nectoux P, Gouriveau R, Medjaher K, Ramasso E, Chebel-Morello B, Zerhouni N, Varnier C. PRONOSTIA : An experimental platform for bearings accelerated degradation tests. IEEE International Conference on Prognostics and Health Management 2012; 1-8.
  • 36. Nikolaou N. G, Antoniadis I. A. Rolling element bearing fault diagnosis using wavelet packets NDT & E International 2002; 35(3): 197-205, https://doi.org/10.1016/S0963-8695(01)00044-5.
  • 37. Patil M. A, Tagade P, Hariharan K, Kolake S, Song T, Yeo T, Doob S. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation. Applied Energy 2015; 159: 285-297, https://doi.org/10.1016/j.apenergy.2015.08.119.
  • 38. Prabhakar S, Mohanty A. R, Sekhar A. S. Application of discrete wavelet transform for detection of ball bearing race faults. Tribology International 2002, https://doi.org/10.1016/S0301-679X(02)00063-4.
  • 39. Rafiee J, Rafiee M. A, Tse P. W. Application of mother wavelet functions for automatic gear and bearing fault diagnosis. Expert Systems with Applications 2010, https://doi.org/10.1016/j.eswa.2009.12.051.
  • 40. Rai A, Upadhyay S. H. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribology International 2016; 289-306, https://doi.org/10.1016/j.triboint.2015.12.037.
  • 41. Randall R. B, Antoni J. Rolling element bearing diagnostics-A tutorial. Mechanical Systems and Signal Processing 2011; 25(2): 485-520, https://doi.org/10.1016/j.ymssp.2010.07.017.
  • 42. Ren L, Sun Y, Cui J, Zhang, L. Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. Journal of Manufacturing Systems 2018; 48: 71-77, https://doi.org/10.1016/j.jmsy.2018.04.008.
  • 43. Rohlmann A, Schmidt H, Gast U, Kutzner I, Damm P, Bergmann G. In vivo measurements of the effect of whole body vibration on spinal loads. European Spine Journal 2014, https://doi.org/10.1007/s00586-013-3087-8.
  • 44. Saha B, Goebel K, Christophersen J. Comparison of prognostic algorithms for estimating remaining useful life of batteries. Transactions of the Institute of Measurement and Contro 2009; 31(3-4): 293-308, https://doi.org/10.1177/0142331208092030.
  • 45. Si X. S, Wang W, Hu C, Zhou D. Remaining useful life estimation - A review on the statistical data driven approaches. European Journal of Operational Research 2011; 213(1): 1-14, https://doi.org/10.1016/j.ejor.2010.11.018.
  • 46. Sikorska J. Z, Hodkiewicz M, Ma L. Prognostic modelling options for remaining useful life estimation by industry. Mechanical Systems and Signal Processing 2011; 25: 1803-1836, https://doi.org/10.1016/j.ymssp.2010.11.018.
  • 47. Soualhi A, Medjaher K. Zerhouni N. Bearing health monitoring based on hilbert-huang transform, support vector machine, and regression. IEEE Transactions on Instrumentation and Measurement 2015; 64(1): 52-62, https://doi.org/10.1109/TIM.2014.2330494.
  • 48. Souto Maior C. B, Moura M, Lins L. Droguett, Diniz H. E. Remaining Useful Life Estimation by Empirical Mode Decomposition and Support Vector Machine. IEEE Latin America Transactions 2016; 14(11): 4603-4610, https://doi.org/10.1109/TLA.2016.7795836.
  • 49. Standardization. ISO 10816-7: Mechanical vibration - Evaluation of machine vibration by measurements on non-rotating parts. Part 7: Rotodynamic pumps for industrial applications, including measurements on rotating shafts. Switzerland: ISO. 2009.
  • 50. Sutharssan T, Stoyanov S. Bailey C, Rosunally Y. Prognostics and health monitoring of high power LED. Micromachines 2012; 3: 78-100, https://doi.org/10.3390/mi3010078.
  • 51. Sutrisno E, Oh H, Vasan A, Pecht M. Estimation of remaining useful life of ball bearings using data driven methodologies. 2012 IEEE Conference on Prognostics and Health Management 2012; 2: 1-7, https://doi.org/10.1109/ICPHM.2012.6299548.
  • 52. Tandon N, Choudhury A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribology International 1999; 32(8): 469-480, https://doi.org/10.1016/S0301-679X(99)00077-8.
  • 53. Torres M. E, Colominas M, Schlotthauer G, Flandrin P. A complete ensemble empirical mode decomposition with adaptive noise. IEEE International Conference on Acoustics, Speech and Signal Processing 2011, https://doi.org/10.1109/ICASSP.2011.5947265.
  • 54. Vachtsevanos G, Lewis F, Roemer M, Hess A. Biqing Wu t al. Intelligent Fault Diagnosis and Prognosis for Engineering Systems. Intelligent Fault Diagnosis and Prognosis for Engineering Systems 2007, https://doi.org/10.1002/9780470117842.
  • 55. Vapnik V. The Nature of Statistical Learning Theory. New York: Springer, 2000, https://doi.org/10.1007/978-1-4757-3264-1.
  • 56. Wang L. Support Vector Machines : Theory and Applications. 2005, https://doi.org/10.1007/b95439.
  • 57. Widodo A, Yang B. S. Machine health prognostics using survival probability and support vector machine. Expert Systems with Applications 2011; 38(7): 8430-8437, https://doi.org/10.1016/j.eswa.2011.01.038.
  • 58. Wright S. J. Primal-Dual Interior-Point Methods. Primal-Dual Interior-Point Methods 2011.
  • 59. Wu Z, Huang N. E. Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method. Advances in Adaptive Data Anal 2009; 1-41, https://doi.org/10.1142/S1793536909000047.
  • 60. Yan R, Gao R, X. Chen X. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing 2014, 96(Part A): 1-15, https://doi.org/10.1016/j.sigpro.2013.04.015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7cac83b-71fb-4e49-b02a-95af9cf26f85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.