Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article proposes a model of an air transformer taking into account the influence of the use of ferrite plates on properties of such a transformer. This model has the form of a subcircuit dedicated for the SPICE software. It takes into account the influence of such parameters as the number of turns of both windings, the distance between them, the parasitic capacitances of the windings and the sizes of the ferrite plates used on the voltage ratio and frequency characteristics of the air transformer. The form of the developed model is described and some results illustrating the practical usefulness of this model are shown. The obtained results of calculations performed with the use of the proposed model are compared with the corresponding measurement results.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
849 –--867
Opis fizyczny
Bibliogr. 50 poz., fot., rys., wykr., wz.
Twórcy
autor
- Faculty of Electrical Engineering, Gdynia Maritime University, 81-87 Morska St., 81-225 Gdynia, Poland
autor
- Faculty of Electrical Engineering, Gdynia Maritime University, 81-87 Morska St., 81-225 Gdynia, Poland
Bibliografia
- [1] Krause C., Power transformer insulation–history, technology and design, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 19, no. 6, pp. 1941–1947 (2012), DOI: 10.1109/TDEI. 2012.6396951.
- [2] Van den Bossche A., Valchev V., Inductor and Transformers for Power Electronic, CRC Press: Boca Raton, FL, USA (2005).
- [3] Ericson R., Maksimovic D., Fundamentals of Power Electronics, Norwell; Kluwer Academic Publisher: Amsterdam, The Netherlands (2001).
- [4] Valone T.F., Geoengineering Tesla’s Wireless Power Transmission, Extra Ordinary Science and Technology APR/MAY/JUN, pp. 31–42 (2017).
- [5] Kurs A., Karalis A., Moffatt R., Joannopoulos J.D., Fisher P., Soljacic M., Wireless power transfer via strongly coupled magnetic resonances, Science, vol. 317, no. 5834, pp. 83–86 (2007), DOI: 10.1126/science.1143254.
- [6] Coca E., Wireless Power Transfer Fundamentals and Technologies, InTechOpen (2016).
- [7] Zhang Y., Yang J., Jiang D., Li D., Qu R., Design, manufacture, and test of a rotary transformer for contactless power transfer system, IEEE Transactions on Magnetics, vol. 58, no. 2, pp. 1–6 (2021), DOI: 10.1109/TMAG.2021.3094135.
- [8] Kathirvelu K.P., Sandeep G.G.V., Swathi J., Amirtharajan R., Balasubramanian R., Design of Transformer for wireless power transfer in electric vehicles, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 45, no. 4, pp. 1311–1324 (2021), DOI: 10.1007/s40998-021-00441-w.
- [9] Detka K., Górecki K., Wireless power transfer – a review, Energies, vol. 15, no. 19, 7236 (2022), DOI: 10.3390/en15197236.
- [10] Jayalath S., Khan A., Design, Challenges, and Trends of Inductive Power Transfer Couplers for Electric Vehicles: A Review, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 6196–6218 (2021), DOI: 10.1109/JESTPE.2020.3042625.
- [11] Mou X., Sun H., Wireless Power Transfer: Survey and Roadmap, 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5 (2015), DOI: 10.1109/VTCSpring.2015.7146165.
- [12] Rigot V., Phulpin T., Sadarnac D., Sakly J., A new design of an air core transformer for Electric Vehicle On-Board Charger, 2020, 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe), Lyon, France, pp. 1–9 (2020), DOI: 10.23919/EPE20ECCEEurope43536.2020.9215632.
- [13] Bo L., Mao Z., Zhang K., Liu P., Analysis and Optimal Design of a WPT Coupler for Underwater Vehicles Using Non-Dominated Sorting Genetic Algorithm, Applied Sciences, vol. 12, no. 4, 2015 (2022), DOI: 10.3390/app12042015.
- [14] Pugi L., Grasso F., Paolucci L., Luchetti L., Zini G., Finite Element Analysis of Copper Wire for Wireless Power Transfer Applications, 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, pp. 801–806 (2022), DOI: 10.1109/MELECON53508.2022.9843033.
- [15] Stankiewicz J., Comparison of the efficiency of the WPT system using circular or square planar coils, Przegląd Elektrotechniczny, vol. 97, no. 1, pp. 38–43 (2022), DOI: 10.15199/48.2021.10.08.
- [16] Marcinek M., Rezonansowy układ przekształtnikowy z aktywną stabilizacją punktu pracy w systemach bezstykowego przekazywania energii, PhD thesis, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie (in Polish), Szczecin (2015).
- [17] Kevin L., Comparative Study of Different Coil Geometries for Wireless Power Transfer, Dissertation submitted for the Degree of Study (Hons), Universiti Teknologi PETRONAS (2016).
- [18] Murakami R., Inamori M., Morimoto M., Effects of Q factor on wireless power transmission by magnetic resonant coupling, 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), pp. 139–143 (2016), DOI: 10.1109/ICPRE.2016.7871189.
- [19] International Electrotechnical Commission, IEC PAS 63095-2:2017(E), The Qi wireless power transfer system – Power class 0 specification – Part 2: Reference Designs Version.1.1, https://webstore.iec.ch/ publication/28913, accessed 20 February 2024.
- [20] What is Qi2 wireless charging? And why you’ll want it, https://www.belkin.com/clp-what-is-qi2- wireless-charging-blog.html, accessed 20 February 2024.
- [21] How to Manage Loss Efficiently with Ferrite Tiles in Wireless Power Transfer, https://www.kemet.com/en/ us/technical-resources/how-to-manage-loss-efficiently-with-ferrite-tiles-in-wireless-power-transfer. html, accessed 21 February2024.
- [22] Ferrite Material, WPT Ferrite Tiles, FPL Series, https://content.kemet.com/datasheets/KEM_FM0001_ FPL (2023).
- [23] Ferrite plate, https://www.mouser.pl/new/kemet-electronics/kemet-fpl-wpt-ferrite-tiles, accessed 28 January 2024.
- [24] Ferrite plate, https://www.digikey.pl/pl/product-highlight/k/kemet/fpl-series-wpt-ferrite-tiles, accessed 28 January 2024.
- [25] Wen H., Zhang C., Investigation on transmission efficiency for magnetic materials in a wireless power transfer system, 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, pp. 249–253 (2015), DOI: 10.1109/PEDS.2015.7203423.
- [26] Strauch L., Pavlin M., Bregar V.B., Optimization, design, and modeling of ferrite core geometry for inductive wireless power transfer, International Journal of Applied Electromagnetics and Mechanics, vol. 49, no. 1, pp. 145–155 (2015), DOI: 10.3233/JAE-150029.
- [27] Agnaebrahimi M.R., Menzies R.W., Air-core Transformer: A theoretical Analysis and Digital Simulations, International Conference on Power Systems Transients IPST’97, Seattle, pp. 117–122 (1997).
- [28] Liao Z.-J., Wu F., Jiang Ch.-H., Chen Z.-R., Xia Ch.-Y., Analysis and Design of Ideal Transformer-Like Magnetic Coupling Wireless Power Transfer Systems, IEEE Transactions on Power Electronics, vol. 37, no. 12, pp. 15728–15739 (2022), DOI: 10.1109/TPEL.2022.3191941.
- [29] Fernández C., Prieto R., García O., Cobos J.A., Coreless Magnetic Transformer Design Procedure, 2005 IEEE 36th Power Electronics Specialists Conference, pp. 1548–1554 (2005), DOI: 10.1109/PESC.2005.1581836.
- [30] ElGhanam E.A., Hassan M.S., Osman A., Design and Finite Element Modeling of the Inductive Link in Wireless Electric Vehicle Charging Systems, 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, pp. 389–394 (2020), DOI: 10.1109/ITEC48692.2020.9161454.
- [31] Shaarbafi K., Transformer Modelling Guide, Teshmont Consultants LP, https://www.aeso.ca/assets/ linkfiles/4040.002-Rev02-Transformer-Modelling-Guide, accessed 2014.
- [32] Özüpak Y., Analysis of the Model Designed for Magnetic Resonance Based Wireless Power Transfer Using FEM, Journal of Engineering Research, vol. 11, no. 3 (2023), DOI: 10.36909/jer.17631.
- [33] Galarza R.J., Chow J.H., Degeneff R.C., Transformer model reduction using time and frequency domain sensitivity techniques, IEEE Transactions on Power Delivery, vol. 10, no. 2, pp. 1052–1059 (1995), DOI: 10.1109/61.400823.
- [34] De Azambuja R., Brusamarello V.J., Haffner S., Porto R.W., Analysis and optimization of an inductive power transfer with a randomized method, IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 5, pp. 1145–1152 (2014), DOI: 10.1109/TIM.2013.2296397.
- [35] Guillod T., Czyz P., Kolar J.W., Geometrical optimization of medium-frequency air-core transformers for DCX applications, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 4, pp. 4319–4335 (2022), DOI: 10.1109/JESTPE.2021.3140197.
- [36] Waters B.H., Sample A.P., Bonde P., Smith J.R., Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system, Proceedings of the IEEE, vol. 100, no. 1, pp. 138–149 (2011), DOI: 10.1109/JPROC.2011.2165309.
- [37] Detka K., Górecki K., Ptak P., Model of an Air Transformer for Analyses of Wireless Power Transfer Systems, Energies, vol. 16, no. 3, 1391 (2023), DOI: 10.3390/en16031391.
- [38] Górecki K., Detka K., Górski K., Compact thermal model of the pulse transformer taking into account nonlinearity of heat transfer, Energies, vol. 13, no. 11, 2766 (2020), DOI: 10.3390/en13112766.
- [39] Kazimierczuk M., Ayachit A., Transfer functions of a transformer at different values of coupling coefficient, IET Circuits, Devices and Systems, vol. 10, no. 4, pp. 337–348 (2016), DOI: 10.1049/ietcds.2015.0147.
- [40] Liu J., Deng Q., Czarkowski D., Kazimierczuk M.K., Zhou H., Hu W., Frequency optimization for inductive power transfer based on AC resistance evaluation in litz-wire coil, IEEE Transactions on Power Electronics, vol. 34, no. 3, pp. 2355–2363 (2019), DOI: 10.1109/TPEL.2018.2839626.
- [41] Wojda R.P., Kazimierczuk M.K., Winding resistance of litz wire and multi-strand inductors, Proc. IET, Power Electronics, vol. 5, no. 2, pp. 257–268 (2012), DOI: 10.1049/iet-pel.2010.0359.
- [42] Nagashima T., Wei X., Bou E., Alarcón E., Kazimierczuk M.K., Sekiya H., Analysis and design of loosely inductive coupled wireless power transfer with class E2 dc-dc converter, IEEE Transactions on Circuits and Systems – I, Regular Papers, vol. 62, no. 11, pp. 2781–2791 (2015), DOI: 10.1109/TCSI.2015.2482338.
- [43] Pasko S.W., Kazimierczuk M.K., Grzesik B., Self-capacitance of coupled toroidal inductors for EMI filters, IEEE Transactions on Electromagnetic Compatibility, vol. 57, no. 2, pp. 216–223 (2015), DOI: 10.1109/TEMC.2014.2378535.
- [44] Wojda R.P., Kazimierczuk M., Winding resistance and power loss of inductors with litz and solid-round wires, IEEE Transactions on Industry Applications, vol. 54, no. 4, pp. 3548–3557 (2018), DOI: 10.1109/TIA.2018.2821647.
- [45] Mohan S.S., del Mar Hershenson M., Boyd S.P., Lee T.H., Simple accurate expressions for planar spiral inductances, IEEE Journal of Solid-State Circuits, vol. 34, no. 10, pp. 1419–1424 (1999), DOI: 10.1109/4.792620.
- [46] Bensetti M., Kadem K., Pei Y., Le Bihan Y., Labouré E., Pichon L., Parametric Optimization of Ferrite Structure Used for Dynamic Wireless Power Transfer for 3 kW Electric Vehicle, Energies, vol. 16, 5439 (2023), DOI: 10.3390/en16145439.
- [47] Liu G., Zhang G., Liu G., Wang H., Jing L., Experimental and numerical study of high frequency superconducting air-core transformer, Superconductor Science and Technology, vol. 34, no. 8, 085011 (2021), DOI: 10.1088/1361-6668/ac086f.
- [48] Kapetanović I., Sarajlić N., Tešanović M., Kasumović M., Numerical Solution for the Distribution of the Electromagnetic and Thermal Fields of an Air-core Transformer, Journal of Energy-Energija, vol. 57, no. 4, pp. 424–439 (2008), DOI: 10.37798/2008574331.
- [49] Hitchcock R.N., Stanton S.J., Levy S., Dollinger R., Computer modeling of medium coupled resonant air core transformers including resistive losses, Army Electronics Technology and Devices lab Fort Monmouth NJ (1983).
- [50] Ferrite plate type BHIP, https://www.digikey.pl/pl/products/detail/kemet/FPL100-100-6-BH1T/ 10321373, accessed 28 January 2024.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7c96248-3b16-4493-97e8-4dd38ad15c59