PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the modified echo highlight model for underwater vehicles with combined structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The highlight model is widely used as a simple and convenient method in the radar field but its accuracy is not high. Based on the traditional highlight model, the algorithm has been improved to address the acoustic scattering problems of underwater vehicles with more complex line shapes. The basic idea is to partition the model into micro-bodies to calculate the scattered sound pressure, consider the phase interference of each part, and then synthesise the scattered sound pressure to approximate the target’s actual shape. A computational model of the wedge-shaped convex structure on the back of the underwater vehicles is developed using a highlight model of a trapezoidal plate. The results of the calculations using the highlight model approach are consistent with those of the planar element method. Utilising the modified highlight model method, the accuracy of acoustic scattering characteristics calculations for the stern and overall structures of underwater vehicles has proven satisfactory. Finally, fast acoustic scattering prediction software is developed for underwater vehicles, enabling the calculation of the acoustic scattering characteristics for individual structures, combined structures, and coated silent tiles. This software provides algorithmic support for the fast prediction of the acoustic stealth performance of underwater vehicles.
Rocznik
Tom
Strony
163--173
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
autor
  • School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
autor
  • Shanghai Marine Equipment Research Institute, Shanghai 200031, China
autor
  • School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
autor
  • School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
autor
  • Jiangsu University of Science and Technology, Zhenjiang, China
Bibliografia
  • 1. W. Tang, J. Fan, and Z. Ma, ‘Acoustic scattering of underwater target’, Beijing: Science Press, 2018. (in Chinese).
  • 2. Y. Sun, ‘Wide-Frequency-Range prediction method of target strength of underwater structure and its application for submarine sails’, Huazhong University of Science and Technology, 2019, doi: 10.27157/d.cnki.ghzku.2019.000843. (in Chinese).
  • 3. H. Überall, R. Doolittle, and J. McNicholas, ‘Use of sound pulses for a study of circumferential waves’, The Journal of the Acoustical Society of America, vol. 39, no. 3, pp. 564-578, 1966, doi: 10.1121/1.1909929.
  • 4. H. Zheng, R. Cai, and L. Pan, ‘A modified Galerkin FEM for 1D Helmholtz equations’, Applied Acoustics, vol. 74, no. 1, pp. 211-216, 2013, doi: 10.1016/j.apacoust.2012.06.014.
  • 5. W. Murphy, V. Rokhlin, and M. Vassiliou, ‘Solving electromagnetic scattering problems at resonance frequencies’, Journal of Applied Physics, vol. 67, no. 10, pp. 6061-6065, 1990, doi: 10.1063/1.345217.
  • 6. H. Schenck, ‘Improved integral formulation for acoustic radiation problems’, The Journal of the Acoustical Society of America, vol. 44, no. 1, pp. 41-58, 1968, doi: 10.1121/1.1911085.
  • 7. H. Wu, L. Yu, and W. Jiang, ‘A coupling FEM/BEM method with linear continuous elements for acoustic-structural interaction problems’, Applied Acoustics, vol. 150, pp. 44-54, 2019, doi: 10.1016/j.apacoust.2019.02.001.
  • 8. H. Li, Z. Lu, Y. Ke, Y. Tian, and W. Luo, ‘A fast optimization algorithm of FEM/BEM simulation for periodic surface acoustic wave structures’, Information, vol. 10, no. 3, p. 90, 2019, doi: 10.3390/info10030090.
  • 9. W. Zhao, S. Marburg, and H. Chen, ‘A FEM/BEM based topology optimization of submerged bi-material shell structures under harmonic excitations’, INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Institute of Noise Control Engineering, pp.763-774, 2018.
  • 10. H. Chen and W. Zhao, ‘A FEM/BEM based topology optimization of submerged bi-material shell structures under harmonic excitations’, INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Institute of Noise Control Engineering, pp. 5031-5015, 2017.
  • 11. P. Waterman, ‘Matrix theory of elastic wave scattering’, The Journal of the Acoustical Society of America, vol. 60, no. 3, pp. 567-580, 1969, doi: 10.1121/1.381130.
  • 12. F. Ingenito, ‘Scattering from an object in a stratified medium’, The Journal of the Acoustical Society of America, vol. 82, no. 6, pp. 2051-2059, 1987, doi: 10.1121/1.395649.
  • 13. K. Lee and W. Seong, ‘Time-domain Kirchhoff model for acoustic scattering from an impedance polygon facet’, The Journal of the Acoustical Society of America, vol. 126, no. 1, pp. EL14-EL21, 2009, doi: 10.1121/1.3141887.
  • 14. J. Fan, W. Tang, and L. Zhuo, ‘Planar elements method for forecasting the echo characteristics from sonar targets’, Journal of Ship Mechanics, vol. 16, no. Z1, pp.171-180, 2012. (in Chinese).
  • 15. G. Zheng, J. Fan, and W. Tang, ‘A modified planar elements method considering occlusion and secondary scattering’, ACTA ACUSTICA, Chinese version, vol. 36, no. 04, pp. 377383, 2011, doi: 10.15949/j.cnki.0371-0025.2011.04.010. (in Chinese).
  • 16. W. Wang, B. Wang, J. Fan, and J. Zhou, ‘An iterative planar elements method for calculating multiple acoustic scattering from concave targets’, Proceedings of the 18th Symposium on Underwater Noise of Ships, Wuxi: Key Laboratory of Ship Vibration and Noise, pp. 121-126, 2021, doi: 10.26914/c. cnkihy.2021.056714 . (in Chinese).
  • 17. A. Abawi, ‘Kirchhoff scattering from non-penetrable targets modeled as an assembly of triangular facets’, The Journal of the Acoustical Society of America, vol. 140, no. 3, pp. 18781886, 2016, doi: 10.1121/1.4962735.
  • 18. T. Stanton, ‘Sound scattering by cylinders of finite length. I. Fluid cylinders’, The Journal of the Acoustical Society of America, vol. 83, no. 1, pp. 55-62, 1988, doi: 10.1121/1.396184.
  • 19. T. Stanton, ‘Sound scattering by spherical and elongated shelled bodies’, The Journal of the Acoustical Society of America, vol. 88, no. 3, pp. 1619-1633, 1990, doi: 10.1121/1.400321.
  • 20. W. Tang, ‘Highlight model of echoes from sonar targets’, ACTA ACUSTICA, Chinese version , vol. 19, no. 2, pp. 92-100, 1994, doi: 10.15949/j.cnki.0371-0025.1994.02.002. (in Chinese).
  • 21. W. Liu, J. Zhao, Y. Song, and J. Zhang, “Underwater target modelling technology based on modified highlight model”, Torpedo Technology, vol. 18, no. 5, pp. 352-356, 2010. (in Chinese).
  • 22. Y. Chen, “The research of target highlight modelling based on the planar elements clustering”, China Ship Research and Development Academy, 2019. (in Chinese).
  • 23. X. Zhang, J. Zhao, R. Wang, and J. Han, ‘Modelling and simulation of scattering field for bistatic sonar’, Journal of System Simulation, no. 5, pp. 562-565, 2002. (in Chinese).
  • 24. C. Partridge and E. Smith, ‘Acoustic scattering from bodies: Range of validity of the deformed cylinder method’, The Journal of the Acoustical Society of America, vol. 97, no. 2, pp. 784-795, 1995, doi: 10.1121/1.412943.
  • 25. J. Fan, ‘Study on echo characteristics of underwater complex targets’, Shanghai Jiao Tong University, 2001. (in Chinese).
  • 26. Y. Guo, ‘Nuclear submarine profile recognition’, Ordnance Knowledge, no. 5, pp. 54-55, 2003, doi: 10.19437/j.cnki.111470/tj.2003.05.020. (in Chinese).
  • 27. B. Li, ‘Anti-active detection underwater target acoustic stealth shape optimization design’, Jiangsu University of Science and Technology, 2020, doi: 10.27171/d.cnki.ghdcc.2020.000294. (in Chinese).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7c73c83-7629-403c-a620-57f04dc5062d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.