Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The challenge of enhancing purchasing strategies within a large organization, taking into account non-linear constraints, has been thoroughly examined and formalized. The increase in demand for resources over time, changes in prices and the costs of tender procedures are taken into account. The purchasing strategy integrates forecasts derived from historical data and is in accordance with the capacity plan. A simple, linear autoregressive model is used to predict demand changes and a predictive control technique with a moving horizon. Furthermore, the findings from experiments utilizing the genetic algorithm are presented. Finally, important open problems are discussed, the solution of which would expand the scope of applicability and universality of the developed tool.
Rocznik
Tom
Strony
419--425
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- University of Science and Technology, Wrocław
autor
- University of Science and Technology, Wrocław
Bibliografia
- [1] P. Brucker, A. Drexl, R. M¨ohring, K. Neumann, and E. Pesch, “Resource-constrained project scheduling: Notation, classification, models, and methods,” European Journal of Operational Research, vol. 112, no. 1, pp. 3-41, 1999. [Online]. Available: https://doi.org/10.1016/S0377-2217(98)00204-5
- [2] S. S. Padhi, S. M. Wagner, and V. Aggarwal, “Positioning of commodities using the kraljic portfolio matrix,” Journal of Purchasing and Supply Management, vol. 18, no. 1, pp. 1-8, 2012. [Online]. Available: https://doi.org/10.1016/j.pursup.2011.10.001
- [3] M. Prince, J. C. Smith, and J. Geunes, “A three-stage procurement optimization problem under uncertainty,” Naval Research Logistics (NRL), vol. 60, no. 5, pp. 395-412, 2013. [Online]. Available: https://doi.org/10.1002/nav.21541
- [4] R. Sundarraj and S. Talluri, “A multi-period optimization model for the procurement of component-based enterprise information technologies,” European Journal of Operational Research, vol. 146, no. 2, pp. 339-351, 2003. [Online]. Available: https://doi.org/10.1016/S0377-2217(02)00553-2
- [5] P. Berling and Z. Xie, “Approximation algorithms for optimal purchase/inventory policy when purchase price and demand are stochastic,” OR spectrum, vol. 36, pp. 1077-1095, 2014. [Online]. Available: https://doi.org/10.1007/s00291-014-0369-4
- [6] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34-37, 1966. [Online]. Available: https://www.science.org/doi/10.1126/science.153.3731.34
- [7] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge University Press, 2004. [Online]. Available: https://doi.org/10.1017/ CBO9780511804441
- [8] J. J. Moré, “The Levenberg-Marquardt algorithm: implementation and theory,” in Numerical analysis: proceedings of the biennial Conference, Dundee, June 28-July 1, 1977. Springer, 2006, pp. 105-116. [Online]. Available: https://doi.org/10.1007/BFb0067700
- [9] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014. [Online]. Available: https://doi.org/10.48550/arXiv.1412.6980
- [10] M. Dorigo and T. St¨utzle, Ant colony optimization: overview and recent advances. Springer, 2019. [Online]. Available: https://doi.org/10.1007/978-3-319-91086-4 10
- [11] F. Glover and M. Laguna, Tabu search. Springer, 1998. [Online]. Available: https://doi.org/10.1007/978-1-4613-0303-9 33
- [12] E. Nowicki and C. Smutnicki, “A fast taboo search algorithm for the job shop problem,” Management Science, vol. 42, no. 6, pp. 797-813, 1996. [Online]. Available: https://doi.org/10.1287/mnsc.42.6.797
- [13] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983. [Online]. Available: https://www.science.org/doi/10.1126/science.220.4598.671
- [14] S. Niewiadomski and G. Mzyk, “Optimization of procurement strategy supported by simulated annealing and genetic algorithm,” in International Conference on Dependability of Computer Systems. Springer, 2024, pp. 196-205. [Online]. Available: https://doi.org/10.1007/978-3-031-61857-4 19
- [15] Y. Crama, A. Torres et al., “Optimal procurement decisions in the presence of total quantity discounts and alternative product recipes,” European Journal of Operational Research, vol. 159, no. 2, pp. 364-378, 2004. [Online]. Available: https://doi.org/10.1016/j.ejor.2003.08.021
- [16] L. Zhen, “Optimization models for production and procurement decisions under uncertainty,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 3, pp. 370-383, 2015. [Online]. Available: 10.1109/TSMC.2015.2439643
- [17] S. Wagner, G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug, E. Pitzer, S. Vonolfen, M. Kofler, S. Winkler, V. Dorfer et al., “Architecture and design of the HeuristicLab optimization environment,” Advanced Methods and Applications in Computational Intelligence, pp. 197-261, 2014. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-01436-4 10
- [18] E. W. Bai, “An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems,” Automatica, vol. 34, no. 3, pp. 333-338, 1998. [Online]. Available: https://doi.org/10.1016/S0005-1098(97)00198-2
- [19] S. Chen and S. A. Billings, “Representations of non-linear systems: the narmax model,” International journal of Control, vol. 49, no. 3, pp. 1013-1032, 1989. [Online]. Available: https://doi.org/10.1080/00207178908559683
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. This work is supported by the Polish Minister of Education and Science as part of an implementation doctorate, grant No. DWD/5/0286/2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7ba4374-f1c4-4a5f-9e73-bfba98fe529d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.