Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The travel time of ambient noise cross-correlation is widely used in geophysics, but traditional methods for picking the travel time of correlation are either difficult to be applied to data with low signal-to-noise ratio (SNR), or make some assumptions which fail to be achieved in many realistic situations, or require a lot of complex calculations. Here, we present a neural network based on convolutional neural networks (CNN) and Transformer for the travel time picking of ambient noise crosscorrelation. CNNs expand the dimension of the vector of each time step for the input of Transformer. Transformer focuses the model’s attention on the key parts of the sequence. Model derives the travel time according to the attention. 102,000 cross-correlations are used to train the network. Compared with traditional methods, the approach is easy to use and has a better performance, especially for the low SNR data. Then, we test our model on another ambient noise cross-correlation dataset, which contains cross-correlations from different regions and at different scales. The model has good performance on the test dataset. It can be seen from the experiment that the travel time of the cross-correlation function of ambient noise with an average SNR as low as 9.3 can be picked. 97.2% of the picked travel times are accurate, and the positive and negative travel time of most cross-correlations are identical (90.2%). Our method can be applied to seismic instrument performance verification, seismic velocity imaging, source location and other applications for its good ability to pick travel time accurately.
Wydawca
Czasopismo
Rocznik
Tom
Strony
97--114
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang, China
autor
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang, China
autor
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang, China
autor
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang, China
Bibliografia
- 1. Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169(3):1239-1260. https://doi.org/ 10.1111/j.1365-246X.2007.03374.x
- 2. Brenguier F, Shapiro NM, Campillo M, Ferrazzini V, Duputel Z, Cou-tant O, Nercessian A (2008) Towards forecasting volcanic eruptions using seismic noise. Nat Geosci 1(2):126-130
- 3. Chai C, Maceira M, Santos-Villalobos HJ, Venkatakrishnan SV et al (2020) Using a deep neural network and transfer learning to bridge scales for seismic phase picking. Geophys Res Lett 47:e2020GL088651
- 4. Chen KX, Gung Y, Kuo BY, Huang TY (2018) Crustal magmatism and deformation fabrics in northeast Japan revealed by ambient noise tomography. J Geophysi Res Solid Earth 123(10):8891-8906
- 5. Djebbi R, Alkhalifah T (2014) Traveltime sensitivity kernels for wave equation tomography using the unwrapped phase. Geophys J Int 197(2):975-986
- 6. Gouédard P, Seher T, McGuire JJ, Collins JA, van der Hilst RD (2014) Correction of ocean-bottom seismometer instrumental clock errors using ambient seismic noise. Bull Seismol Soc Am 104(3):1276-1288
- 7. Grět A, Snieder R, Scales J (2006) Tim-lapse monitoring of rock properties with coda wave interferometry. J Geophys Res Solid Earth. https://doi.org/10.1029/2004JB003354
- 8. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 770-778
- 9. Huang L, Li J, Hao H, Li X (2018) Micro-seismic event detection and location in underground mines by using convolutional neural networks (CNN) and deep learning. Tunn Undergr Space Technol 81:265-276
- 10. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90-95
- 11. Lin FC, Moschetti MP, Ritzwoller MH (2008) Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and love wave phase velocity maps. Geophys J Int 173(1):281-298
- 12. Luo Y, Yang Y, Xie J, Yang X, Ren F, Zhao K, Xu H (2020) Evaluating uncertainties of phase velocity measurements from cross-correlations of ambient seismic noise. Seismol Res Lett 91(3):1717-1729
- 13. Mousavi SM, Zhu W, Sheng Y, Beroza GC (2019) CRED: A deep residual network of convolutional and recurrent units for earthquake signal detection. Sci Rep 9(1):1-14
- 14. Mousavi SM, Ellsworth WL, Zhu W, Chuang LY, Beroza GC (2020) Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat Com-mun 11(1):3952
- 15. Novoselov A, Balazs P, Bokelmann G (2022) Separating and denoising seismic signals with dual-path recurrent neural network architecture. J Geophys Res Solid Earth 127:e2021JB023183
- 16. Paszke A, Gross S, Massa F, Lerer A, Bradbury J et al (2019) Pytorch: an imperative style, high-performance deep learning library. Advances in neural information processing systems, vol 32
- 17. Perol T, Gharbi M, Denolle M (2018) Convolutional neural network for earthquake detection and location. Sci Adv 4(2):e1700578
- 18. Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307(5715):1615-1618
- 19. Shen Y, Ren Y, Gao H, Savage B (2012) An improved method to extract very-broadband empirical Green’s functions from ambient seismic noise. Bull Seismol Soc Am 102(4):1872-1877
- 20. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
- 21. Song W, Feng X, Wu G, Zhang G, Liu Y, Chen X (2021) Convolutional neural network, res-unet++, -based dispersion curve picking from noise cross-correlations. J Geophys Res Solid Earth 126(11):2021022027
- 22. Stehly L, Campillo M, Shapiro NM (2006) A study of the seismic noise from its long-range correlation properties. J Geophys Res Solid Earth 111(B10):B10306
- 23. Stehly L, Campillo M, Shapiro NM (2007) Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts. Geophys J Int 171(1):223-230
- 24. Tsai VC (2009) On establishing the accuracy of noise tomography travel-time measurements in a realistic medium. Geophys J Int 178(3):1555-1564
- 25. Vaswani A, Shazeer N, Parmar N, Uszkoreit J et al (2017) Attention is all you need. In: Advances in neural information processing systems, vol 30
- 26. Viens L, Van Houtte C (2020) Denoising ambient seismic field correlation functions with convolutional autoencoders. Geophys J Int 220(3):1521-1535
- 27. Wegler U, Sens-Schönfelder C (2007) Fault zone monitoring with passive image interferometry. Geophys J Int 168(3):1029-1033
- 28. Xie J, Chu R, Ni S (2020) Relocation of the 17 June 2017 Nuugaatsiaq (Greenland) landslide based on Green’s functions from ambient seismic noises. J Geophys Res Solid Earth 125(5):e2019JB018947
- 29. Yang X, Bryan J, Okubo K, Jiang C, Clements T, Denolle MA (2022) Optimal stacking of noise cross-correlation functions. Geophys J Int 232(3):1600-1618
- 30. Ye F, Lin J, Shi Z, Lyu S (2018) Monitoring temporal variations in instrument responses in regional broadband seismic network using ambient seismic noise. Geophys Prospect 66(5):1019-1036
- 31. Zhang Y, Li H, Huang Y, Liu M, Guan Y, Su J, Wang T (2020a) Shallow structure of the Longmen Shan fault zone from a high-density, short-period seismic array. Bull Seismol Soc Am 110(1):38-48
- 32. Zhang X, Jia Z, Ross ZE, Clayton RW (2020b) Extracting dispersion curves from ambient noise correlations using deep learning. IEEE Trans Geosci Remote Sens 58(12):8932-8939
- 33. Zhou Y, Yue H, Kong Q, Zhou S (2019) Hybrid event detection and phase-picking algorithm using convolutional and recurrent neural networks. Seismol Res Lett 90(3):1079-1087
- 34. Zhu W, Beroza GC (2019) PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophys J Int 216(1):261-273
- 35. Zhu W, Mousavi SM, Beroza GC (2019) Seismic signal denoising and decomposition using deep neural networks. IEEE Trans Geosci Remote Sens 57(11):9476-9488
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7b7d529-6bce-415b-a593-8080e3f94626