PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spacecraft attitude fault tolerant control based on multi-objective optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An active fault tolerant controller is designed for the attitude control of a faulty spacecraft. Feedback linearization and Lyapunov’s direct method are used to solve angular velocity equations and to ensure convergence of the system outputs to reference inputs, respectively. In order to ensure finite time convergence, final time constraints are proposed. Three con- structive objective functions are considered as performance measures and optimized using multi-objective optimization. The results show that the outputs converge to the reference attitudes, even for severe actuator faults/failures.
Rocznik
Strony
983--996
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Aerospace Research Institute, Ministry of Science, Research and Technology, Tehran, Iran
  • Aerospace Research Institute, Ministry of Science, Research and Technology, Tehran, Iran
  • Sharif University of Technology, Department of Aerospace Engineering, Tehran, Iran
Bibliografia
  • 1. Alikhani A., 2017, Passive fault-tolerant control of an underactuated re-entry capsule, Journal of Aerospace Technology and Management, 9, 4, 442-452, DOI: 10.5028/jatm.v9i4.771.
  • 2. Benosman M., Lum K.Y., 2009, Online reference reshaping and control reallocation for nonlinear fault tolerant control, IEEE Transactions on Control Systems Technology, 17, 2, 366-379, DOI: 10.1109/TCST.2008.2000983.
  • 3. Blanke M., Kinnaert M., Lunze J., Staroswiecki M., 2006, Diagnosis and Fault-Tolerant Control, Springer, DOI: 10.1007/978-3-540-35653-0.
  • 4. De Boor C., 1978, A Practical Guide to Splines, Hardcover, ISBN: 978-0-387-95366-3.
  • 5. Fekih A., 2014, Fault diagnosis and fault tolerant control design for aerospace systems: a bibliographical review, American Control Conference (ACC), DOI: 10.1109/ACC.2014.6859271.
  • 6. Hu Q., Niu G., Wang C., 2017, Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation, Aerospace Science and Technology, 75, April, 245-253, DOI: 10.1016/j.ast.2017.12.031.
  • 7. Hu Q., Shao X., Guo L., 2018, Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance, IEEE/ASME Transactions on Mechatronics, 23, 1, 331-341, DOI: 10.1109/TMECH.2017.2775626.
  • 8. Jiang J., Yu X., 2012, Fault tolerant control systems: a comparative study between active and passive approaches, Annual Reviews in Control, 36, 1, 6072, DOI: 10.1016/j.arcontrol.2012.03.005.
  • 9. Jiang J., Zhang Y., 2006, Accepting performance degradation in fault tolerant system design, IEEE Transactions on Control Systems Technology, 14, 2, 284-292, DOI: 10.1109/TCST.2005.860515.
  • 10. Khalil H.K., 2014, Nonlinear Control, Pearson, ISBN-13: 978-0133499261.
  • 11. Linlin L., 2016, Fault Detection and Fault-Tolerant Control for Nonlinear Systems, Springer, DOI: 10.1007/978-3-658-13020-6.
  • 12. Lunze J., Richter J.H., 2008, Reconfigurable fault-tolerant control: a tutorial introduction, European Journal of Control, 14, 5, 359-386, DOI: 10.3166/ejc.14.359-386.
  • 13. Marler R.T., Arora J.S., 2004, Survey of multi-objective optimization methods for engineering, Structural and Multidisciplinary Optimization, 26, 369395, DOI: 10.1007/s00158-003-0368-6.
  • 14. Miksch T., Gambier A., 2011, Fault-tolerant control by using lexicographic multi-objective optimization, Proceedings of 8th Asian Control Conference (ASCC), Kaohsiung, Taiwan, May 15-18.
  • 15. Moradi R., Jegarkandi M.F., Alikhani A., 2017, A heuristic active fault tolerant controller for the stabilization of spacecraft, Acta Polytechnica Hungarica, 14, 6.
  • 16. Noura H., Theilliol D., Ponsart J.C., Chamseddine A., 2009, Fault Tolerant Control Systems Design and Practical Applications, Springer-Verlag, London, DOI: 10.1007/978-1-84882-653-3.
  • 17. Tafazoli, M., 2008, A study of on-orbit spacecraft failures, Acta Astronautica, 64, 23, 195-205, DOI: 10.1016/j.actaastro.2008.07.019.
  • 18. Wang D., Jia Y., Jin L., Xu S., 2013, Control analysis of an underactuated spacecraft under disturbance, Acta Astronautica, 83, 44-53, DOI: 10.1016/j.actaastro.2012.10.029.
  • 19. Witczak M., 2014, Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, Springer, DOI: 10.1007/978-3-319-03014-2.
  • 20. Yin S., Xiao B., Ding S., Zhou D., 2016, A review on recent development of spacecraft attitude fault tolerant control system, IEEE Transactions on Industrial Electronics, 63, 5, 3311-3320, DOI: 10.1109/TIE.2016.2530789.
  • 21. Zhang Y., Jiang J., 2008, Bibliographical review on reconfigurable fault-tolerant control, Annual Reviews in Control, 32, 2, 229-252, DOI: 10.1016/j.arcontrol.2008.03.008.
  • 22. Zipfel P.H., 2007, Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA Education Series, 2nd Ed., DOI: 10.2514/4.862182.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7b60823-df53-4135-8629-8745762d3abe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.