Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Thermal processes in domain of thin metal film subjected to a strong laser pulse are discussed. The heating of domain considered causes the melting and next (after the end of beam impact) the resolidification of metal superficial layer. The laser action (a time dependent bell-type function) is taken into account by the introduction of internal heat source in the energy equation describing the heat transfer in domain of metal film. Taking into account the extremely short duration, extreme temperature gradients and very small geometrical dimensions of the domain considered, the mathematical model of the process is based on the dual phase lag equation supplemented by the suitable boundary-initial conditions. To model the phase transitions the artificial mushy zone is introduced. At the stage of numerical modeling the Control Volume Method is used. The examples of computations are also presented.
Czasopismo
Rocznik
Tom
Strony
41--44
Opis fizyczny
Bibliogr. 15 poz., rys., wykr., wzory
Twórcy
autor
- Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Higher School of Labour Safety Management, Bankowa 8, 40-007 Katowice Poland
Bibliografia
- [1] Mochnacki, B. & Majchrzak, E. (2010). Numerical modeling of casting solidification using generalized finite difference method, Materials Science Forum, 638-642, 2676-2681.
- [2] Mochnacki, B. (2012). Definition of alloy substitute thermal capacity using the simple macrosegregation models, Archives of Foundry Engineering, 19, 4, 113-116.
- [3] Mochnacki, B. (2011). Computational simulations and applications, Numerical modeling of solidification process (Chapter 24), Ed. Jianping Zhu, INTECH, 513-542.
- [4] Szopa, R. (2015). Numerical modeling of pure metal solidification using the one domain approach, Journal of Applied Mathematics and Computational Mechanics, 14, 3, 28-34.
- [5] Bondarenko, V.I., Bilousov, V.V., Nedopekin, F.V. & Shalapko, J.I. (2015). The mathematical model of hydrodynamics and heat and mass transfer at formation of steel ingots and castings, Archives of Foundry Engineering, 15, 1, 13-16.
- [6] Ivanova, A.A. (2012). Calculation of phase change boundary position in continuous casting, Archives of Foundry Engineering, 13, 4, 57-62.
- [7] Mochnacki, B. & Majchrzak, E. (2007). Identification of macro and micro parameters in solidification model, Bulletin of the Polish Academy of Sciences: Technical Sciences, 55,1, 107-113.
- [8] Majchrzak, E. & Mochnacki, B. (2007). Identification of thermal properties of the system casting-mould, Material Science Forum, 539-543, 2491-2496.
- [9] Chen, J.K. & Beraun, J.E. (2001), Numerical study of ultrashort laser pulse interactions with metal films, Numerical Heat Transfer, Part A, 40, 1-20.
- [10] Zhang, Z.N. (2007). Nano/microscale heat transfer, McGraw-Hill, New York.
- [11] Chen, G., Borca-Tasciuc, D., Yang, R.G. (2004). Nanoscale heat Transfer, Encyclopedia of NanoScience and Nanotechnology, 7, 429-459.
- [12] Majchrzak E., Dziatkiewicz J. (2012) Numerical modeling of melting process of thin metal film subjected to the short laser pulse, Archives of Foundry Engineering, 12, 4, 105-108.
- [13] Piasecka-Belkhayat, A., Korczak, A. (2014). Modeling of transient heat transport in one-dimensional crystalline solids using the interval lattice Boltzman method, in: T. Lodygowski, J.Rakowski, P.Litewka, Recent Advances in Computational Mechanics, CRC Press, 363-367.
- [14] Mochnacki, B., Ciesielski, M. (2015). Micro-scale heat transfer. Algorithm basing on the Control Volume Method and the identification of relaxation and thermalization times using the search method, Computer Methods in Materials Science (in print).
- [15] Tang, D.W., Araki, N. (1999). Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses. International Journal of Heat and Mass Transfer, 42, 855-860.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7b2c4e7-81d2-46b4-bdad-4207962114f3