PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-isothermal Studies on the Thermal Decomposition of C4 Explosive Using the TG/DTA Technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal behaviour of energetic materials is very important for their safe production, storage, handling and even demilitarization. In this work, the thermal behaviour and decomposition kinetics of conventional C4 plastic explosive has been studied experimentally by a non-isothermal thermogravimetric (TG)/differential thermal analysis (DTA) technique at different heating rates (2, 4, 6 and 8 °C·min-1). The kinetic triplet of activation energy, frequency factor and model of thermal decomposition of this compound has been evaluated via model-fitting and model-free methods. The results show a single thermal decomposition process for C4, with the model of integral function (g(α)) of [(1−α)-1/3 −1]2 and differential function (f(α)) of [(1−α)2/3(3α−3)/2(1−α)1/3−2], indicating a 3-dimensional diffusion mechanism. In addition, Ea values of 207.1 ± 17.3, and 241 kJ·mol-1, by using the isoconversional model-free modified Kissinger-Akahira-Sunose (KAS) and the Kissinger method, respectively, were obtained for the conversion interval of 0.3-0.7. The C4 matrix shows a significant effect on the activation energy distribution of pure RDX.
Rocznik
Strony
405--416
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Department of Applied Chemistry, Maleke-ashtar University of Technology, Shahin-shahr, Esfahan, I. R. Iran
autor
  • Department of Applied Chemistry, Maleke-ashtar University of Technology, Shahin-shahr, Esfahan, I. R. Iran
autor
  • Department of Applied Chemistry, Maleke-ashtar University of Technology, Shahin-shahr, Esfahan, I. R. Iran
Bibliografia
  • [1] Roduit B., Borgeat Ch., Berger B., Folly P., Alonso B., Aebischer J.N., The Prediction of Thermal Stability of Self-reactive Chemicals, J. Therm. Anal. Calorim., 2005, 80, 91-102.
  • [2] Sinditskii V.P., Egorshev V.Y., Combustion Mechanism and Kinetics of Thermal Decomposition of Ammonium Chlorate and Nitrite, Cent. Eur. J. Energ. Mater., 2010, 7, 61-67.
  • [3] Yan Q.L., Zeman S., Zhao F.Q., Elbeih A., Non-isothermal Analysis of C4 Bonded Explosives Containing Different Cyclic Nitramines, Thermochim. Acta, 2013, 556, 6-12.
  • [4] Singh G., Felix S.P., Soni P., Studies on Energetic Compounds. Part 31: Thermolysis and Kinetics of RDX and Some of Its Plastic Bonded Explosives, Thermochim. Acta, 2005, 426, 131-139.
  • [5] Zeman S., Elbeih A., Akstein Z., Preliminary Study on Several Plastic Bonded Explosives Based on Cyclic Nitramines, Chin. J. Energ. Mater., 2011, 19, 8-12.
  • [6] Yan Q.L., Zeman S., Elbeih A., Recent Advances in Thermal Analysis and Stability Evaluation of Insensitive Plastic Bonded Explosives (PBXs), Thermochim. Acta, 2012, 537, 1-12.
  • [7] Yan Q.L., Zeman S., Svoboda R., Elbeih A., Málek J.,The Effect of Crystal Structure on the Thermal Initiation of CL-20 and Its C4 Bonded Explosives (II): Models for Overlapped Reactions and Thermal Stability, J. Therm. Anal. Calorim., 2013, 112, 837-849.
  • [8] Yan Q.L., Zeman S., Elbeih A., Song Z.W., Málek J., The Effect of Crystal Structure on the Thermal Reactivity of CL-20 and Its C4 Bonded Explosives (I): Thermodynamic Properties and Decomposition Kinetics, J. Therm. Anal. Calorim., 2013, 112, 823-836.
  • [9] Zeman S., Elbeih A., Yan Q.L., Notes on the Use of the Vacuum Stability Test In the Study of Initiation Reactivity of Attractive Cyclic Nitramines in the C4 Matrix, J. Therm. Anal. Calorim., 2013, 112, 1433-1437.
  • [10] Yan Q.L., Zeman S., Elbeih A., Thermal Behaviour and Decomposition Kinetics of Viton A Bonded Explosives Containing Attractive Cyclic Nitramines, Thermochim. Acta, 2013, 562, 56-64.
  • [11] Sbirrazzuoli N, Vincent L., Mija A, Guigo N., Integral, Differential and Advanced Isoconversional Methods Complex Mechanisms and Isothermal Predicted Conversion-time Curves, Chemometr. Intell. Lab., 2009, 96, 219-226.
  • [12] Moukhina E., Determination of Kinetic Mechanisms for Reactions Measured with Thermoanalytical Instruments, J. Therm. Anal. Calorim.; DOI 10.1007/s10973- 012-2406-3.
  • [13] Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N., ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data, Thermochim. Acta, 2011, 520, 1-19.
  • [14] Hemmilä M.O., Use of Thermal Analysis in Compatibility Testing of 2, 4, 6-Trinitrotoluene, J. Therm. Anal., 1982, 25, 135-138.
  • [15] Chen G., Lee C., Kuo Y.L., Yen Y.W., A DSC Study on the Kinetics of Disproportionation Reaction of (hfac) CuI(COD), Thermochim. Acta, 2007, 456, 89-93.
  • [16] Fengqi Z., Rongzu H., Jirong S., Hongxu G., Kinetics of the Exothermic Decomposition of 1-Nitro-3-(β,β,β-trinitroethyl)-4,5-dinitroiminoimidazolidine- 2-one, Russ. J. Phys. Chem., 2006, 80, 1034-1036.
  • [17] Svoboda R., Málek J., Interpretation of Crystallization Kinetics Results Provided by DSC, Thermochim. Acta, 2011, 526, 237-251.
  • [18] Málek J., The Kinetic Analysis of Non-isothermal Data, Thermochim. Acta, 1992, 200, 257-269.
  • [19] Akhavan J., The Chemistry of Explosives, 3rd ed., Roy. Soc. Chem. Publishing, UK, 2011, pp. 49-113.
  • [20] Rongzu H., Desuo Y., Fengqi Z., Pei C., Yang L., Sanping C., Hongan Z., Jirong S., Shengli G., Qizhen S., Kinetics and Mechanism of Exothermic First-stage Decomposition Reaction for 2,6-Dinitro-4,8-bis(2,2,2-trinitroethyl)-2,4,6,8-tetraazabicyclo[ 3.3.1]nonane-3,7-dionel, Chem. Res. Chinese, 2004, 20, 821-825.
  • [21] Khawam A., Flanagan D.R., Solid-state Kinetic Models: Basics and Mathematical Fundamentals, J. Phys. Chem. B, 2006, 110, 17315-17328.
  • [22] Chen H., Liu N., Application of Non-Arrhenius Equations in Interpreting Calcium Carbonate Decomposition Kinetics: Revisited, J. Am. Ceram. Soc., 2010, 93, 548-553.
  • [23] Sbirrazzuoli N., Vincent L., Mija A., Guigo N., Integral, Differential and Advanced Isoconversional Methods Complex Mechanisms and Isothermal Predicted Conversion-time Curves, Chemometr. Intell. Lab., 2009, 96, 219-226.
  • [24] Segal E., Rate Equations of Solid State Reactions. Euclidean and Fractal Models, Revue Roumaine de Chimie, 2012, 57, 491-493.
  • [25] Burnham A., Computational Aspects of Kinetic Analysis. Part D: The ICTAC Kinetics Project – Multi-thermal-history Model-model-fitting Methods and Their Relation to Isoconversional Methods, Thermochim. Acta, 2000, 355, 165-70.
  • [26] Khawam A., Flanagan D.R., Solid-State Kinetic Models: Basics and Mathematical Fundamentals, J. Phys. Chem. B, 2006, 110, 17315-17328.
  • [27] Opfermann J., Kinetic Analysis Using Multivariate Non-linear Regression – I. Basic Concepts, J. Therm. Anal. Calorim., 2000, 60, 641-658.
  • [28] Long G.T., Vyazovkin S., Brems B.A., Wight C.A., Competitive Vaporization and Decomposition of Liquid RDX, Phys. Chem. J., 2000, 104, 2570-2574.
  • [29] Zhu Y.L., Huang H., Ren H., Jiao Q.J., Influence of Aluminum Particle Size on Thermal Decomposition of RDX, J. Energ. Mater., 2013, 31, 178-191.
  • [30] Laidler K.J., The Development of the Arrhenius Equation, J. Chem. Educ., 1984, 61, 494-498.
  • [31] Zhao F.Q., Gao H.X., Hu R.Z., Lu G.E., Jiang J.Y., A Study of Estimating the Safe Storage Life, Self-accelerating Decomposition Temperature and Critical Temperature of Thermal Explosion of Double-base Propellant Using Isothermal and Non-isothermal Decomposition Behaviours, Chinese Chem. Lett., 2006, 17, 667-670.
  • [32] Tarver C.M., Tran T.D., Thermal Decomposition Models for HMX-based Plastic Bonded Explosives, Combust. Flame, 2004, 137, 50-62.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7b189d7-f49f-4507-9ae6-553de0a0b511
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.