PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural characterisation of adsorbent ash with potentially toxic elements in a mortar

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Potentially toxic elements (PTEs) in ecosystems and construction materials pose a significant environmental concern. Various qualitative and quantitative techniques are employed to analyse PTEs in a sample. This study explores an innovative approach that incorporates PTE (Cd, Zn, Cu, Pb) adsorbent ash, specifically adsorbed paper ash (APA) and adsorbed mulch ash (AMA), into mortar composites. This approach offers several advantages, including reduced reliance on waste landfills, energy recovery during the ashing process, and immobilisation of PTEs within a cement matrix. This study evaluated the elemental and microstructural characteristics of mortar composites incorporated with adsorbed ash by using a scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS), followed by analysing the elemental maps with ImageJ software version 1.8.0. Parallel experiments were conducted to measure the leaching of mortar composites. The total elemental content of PTEs in the leachate solutions was quantified using an inductively coupled plasma-optical emission spectrometer (ICP-OES). The differences in adsorption capacity and leaching of PTEs observed between paper and mulch can be ascribed to their distinct affinities, which are influenced by the recorded pH levels. The examined elemental mapping revealed a consistent distribution across the APA and AMA mortar matrix structures, with greater intensity than the blank mortar sample. Furthermore, there is a reverse correlation between the order of percentage area coverage of the immobilised elements and the order of leaching, indicating that the PTEs were successfully immobilised. The percentage of PTE area coverage within AMA mortar composites followed the subsequent order: Pb > Cd > Zn > Cu, constituting 32.1 %, 28.6 %, 13.8 %, and 12.4 %, respectively. This order was also observed in the blank mortar composite, with percentages of 12.5 %, 8.6 %, 4.5 %, and 4.2 %, respectively. In the case of the APA mortar composite, the percentage of area coverage followed a different sequence: Cd > Pb > Zn > Cu, representing 27.7 %, 26.6 %, 14.5 %, and 14.1 %, respectively. The results also demonstrated notable improvements in the microstructure of the mortar when AMA and APA are incorporated, which is attributed to the ash additives’ micro-filling capacity. The findings contribute to advancing environmentally sound construction practices, with implications for sustainable waste management and pollution mitigation.
Rocznik
Strony
103--116
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly Street, Gödöllő 2100, Hungary, phone: +36307843016
  • Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly Street, Gödöllő 2100, Hungary, phone: +36307843016
  • Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly Street, Gödöllő 2100, Hungary, phone: +36307843016
  • Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly Street, Gödöllő 2100, Hungary, phone: +36307843016
  • Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly Street, Gödöllő 2100, Hungary, phone: +36307843016
Bibliografia
  • [1] Gabrijel I, Jelčić Rukavina M, Štirmer N. Influence of wood fly ash on concrete properties through filling effect mechanism. Materials. 2021;14(23):7164. DOI: 10.3390/ma14237164.
  • [2] Carević I, Serdar M, Štirmer N, Ukrainczyk N. Preliminary screening of wood biomass ashes for partial resources replacements in cementitious materials. J Cleaner Prod. 2019;229:1045-64. DOI: 10.1016/j.jclepro.2019.04.321.
  • [3] Füzesi I, Heil B, Kovács G. Effects of wood ash on the chemical properties of soil and crop vitality in small plot experiments. Acta Silv Lign Hung. 2015;11(1):55-64. DOI: 10.1515/aslh-2015-0004.
  • [4] Ali A, Hashmi HN, Baig N. Treatment of the paper mill effluent - A review. Annals Faculty Eng Hunedoara. 2013;11(3):337. Available from: https://annals.fih.upt.ro/pdf-full/2013/ANNALS-2013-3-56.pdf.
  • [5] Cherian C, Siddiqua S. Pulp and paper mill fly ash: A review. Sustainability. 2019;11(16):4394. DOI: 10.3390/su11164394.
  • [6] Lessard JM, Omran A, Tagnit-Hamou A, Gagne R. Feasibility of using biomass fly and bottom ashes in drycast concrete production. Construction Building Materials. 2017;132:565-77. DOI: 10.1016/j.conbuildmat.2016.12.009.
  • [7] Agrawal VM, Savoikar PP. Sustainable use of normal and ultra-fine fly ash in mortar as partial replacement to ordinary Portland cement in ternary combinations. Materials Today: Proc. 2022;51:1593-7. DOI: 10.1016/j.matpr.2021.10.409.
  • [8] Omur T, Miyan N, Kabay N, Birol B, Oktay D. Characterization of ferrochrome ash and blast furnace slag based alkali-activated paste and mortar. Construction Building Materials. 2023;363:129805. DOI: 10.1016/j.conbuildmat.2022.129805.
  • [9] Martínez-García R, Jagadesh P, Zaid O, Șerbănoiu AA, Fraile-Fernández FJ, de Prado-Gil J, et al. The present state of the use of waste wood ash as an eco-efficient construction material: A review. Materials. 2022;15(15):5349. DOI: 10.3390/ma15155349.
  • [10] Elangovan G, Rajanandhini MV. Experimental study and SEM analysis on mortar cube with wood ash for partial replacement of cement. Manage Res. 2018;5(3):263-9. DOI: 10.5281/zenodo.1218517.
  • [11] Awolusi TF, Sojobi AO, Afolayan JO. SDA and laterite applications in concrete: Prospects and effects of elevated temperature. Cogent Eng. 2017;4(1):1387954. DOI: 10.1080/23311916.2017.1387954.
  • [12] Wong LS, Chandran SN, Rajasekar RR, Kong SY. Pozzolanic characterization of waste newspaper ash as a supplementary cementing material of concrete cylinders. Case Stud Construction Materials. 2022; 17:e01342. DOI: 10.1016/j.cscm.2022.e01342.
  • [13] Nasir M, Aziz MA, Zubair M, Ashraf N, Hussein TN, Allubli MK, et al. Engineered cellulose nanocrystals-based cement mortar from office paper waste: Flow, strength, microstructure, and thermal properties. J Building Eng. 2022;51:104345. DOI: 10.1016/j.jobe.2022.104345.
  • [14] Ekinci A, Hanafi M, Aydin E. Strength, stiffness, and microstructure of wood-ash stabilized marine clay. Minerals. 2020;10(9):796. DOI: 10.3390/min10090796.
  • [15] Seifi S, Sebaibi N, Levacher D, Boutouil M. Mechanical performance of a dry mortar without cement, based on paper fly ash and blast furnace slag. J Building Eng. 2019;22:113-21. DOI: 10.1016/j.jobe.2018.11.004.
  • [16] Zmamou H, Leblanc N, Levacher D, Kubiak J. Recycling of high quantities of wastepaper sludge ash for production of blended cements and alternative materials. Environ Technol Innov. 2021;23:101524. DOI: 10.1016/j.eti.2021.101524.
  • [17] CEN/TS 14429. Characterization of Waste-Leaching Behaviour Tests-Influence of pH on Leaching with Initial Acid/base Addition. 2005. Available from: https://ilnas.services-publics.lu/ecnor/ downloadPreview.action?documentReference=15557.
  • [18] Boruczkowski T, Boruczkowska H, Drożdż W, Miszczak M, Leszczyński W. Use of image software for assessment of mechanical damage to starch granules. Processes. 2022;10(4):630. DOI: 10.3390/pr10040630.
  • [19] Jamshaid A, Hamid A, Muhammad N, Naseer A, Ghauri M, Iqbal J, et al. Cellulose‐based materials for the removal of heavy metals from wastewater - An overview. ChemBioEng Rev. 2017;4(4):240-56. DOI: 10.1002/cben.201700002.
  • [20] Chirenje T, Ma LQ, Lu L. Retention of Cd, Cu, Pb and Zn by wood ash, lime and fume dust. Water Air Soil Pollut. 2006;171:301-14. DOI: 10.1007/s11270-005-9051-4.
  • [21] Soleimanifar H, Deng Y, Wu L, Sarkar D. Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff. Chemosphere. 2016;154:289-92. DOI: 10.1016/j.chemosphere.2016.03.101.
  • [22] Sidhu V, Barrett K, Park DY, Deng Y, Datta R, Sarkar D, et al. Wood mulch coated with iron-based water treatment residuals for the abatement of metals and phosphorus in simulated stormwater runoff. Environ Technol Innov. 2021;21:101214. DOI: 10.1016/j.eti.2020.101214.
  • [23] Pham BN, Kang JK, Lee CG, Park SJ. Removal of heavy metals (Cd2+, Cu2+, Ni2+, Pb2+) from aqueous solution using Hizikia fusiformis as an algae-based bioadsorbent. Appl Sci. 2021;11(18):8604. DOI: 10.3390/app11188604.
  • [24] Han B, Weatherley AJ, Mumford K, Bolan N, He JZ, Stevens GW, et al. Modification of naturally abundant resources for remediation of potentially toxic elements: A review. J Hazardous Materials. 2022;421:126755. DOI: 10.1016/j.jhazmat.2021.126755.
  • [25] Ding Z, Xu X, Phan T, Hu X. Carbonized waste corrugated paper packaging boxes as low-cost adsorbent for removing aqueous Pb(II), Cd(II), Zn(II), and methylene blue. Polish J Environ Stud. 2018;27(6). DOI: 10.15244/pjoes/81204.
  • [26] Farghali AA, Bahgat M, Allah AE, Khedr MH. Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef Univ J Basic Appl Sci. 2013;2(2):61-71. DOI: 10.1016/j.bjbas.2013.01.001.
  • [27] Arshadi M, Amiri MJ, Mousavi S. Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash. Water Resources Industry. 2014;6:1-7. DOI: 10.1016/j.wri.2014.06.001.
  • [28] Akpomie KG, Dawodu FA. Potential of a low-cost bentonite for heavy metal abstraction from binary component system. Beni-Suef Univ J Basic Appl Sci. 2015;4(1):1-3. DOI: 10.1016/j.bjbas.2015.02.002.
  • [29] Kushwaha AK, Gupta N, Chattopadhyaya MC. Adsorption behavior of lead onto a new class of functionalized silica gel. Arabian J Chem. 2017;10:S81-9. DOI: 10.1016/j.arabjc.2012.06.010.
  • [30] Xiuling L. Preparation of Graphene Oxide-Molecular Sieve Composite Adsorbent and its Adsorption Performance for Heavy Metals in Water. IOP Conference Series: Earth Environ Sci. 2021;784(1): 012022. IOP Publishing. DOI: 10.1088/1755-1315/784/1/012022.
  • [31] Kinniburgh DG, Jackson ML, Syers JK. Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Sci Soc America J. 1976;40(5):796-9. DOI: 10.2136/sssaj1976.03615995004000050047x.
  • [32] Directive 1999/31/EC of the Council of the European Union Council decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Off J Eur Commun. 2003;L11/27:1-23. Available from: https://eur-uri=OJ:L:2003:011:0027:0049:EN:PDF.
  • [33] Zohar I, Haruzi P. Image analysis for spectroscopic elemental dot maps: P, Al, and Ca associations in water treatment residuals as a case study. Front Environ Chem. 2021;2:719300. DOI: 10.3389/fenvc.2021.719300.
  • [34] Singh V, Pant N, Sharma RK, Padalia D, Rawat PS, Goswami R, et al. Adsorption studies of Pb(II) and Cd(II) heavy metal ions from aqueous solutions using a magnetic biochar composite material. Separations. 2023;10(7):389. DOI: 10.3390/separations10070389.
  • [35] Grubb DG, Moon DH, Reilly T, Chrysochoou M, Dermatas D. Stabilization/solidification (S/S) of Pb and W contaminated soils using type I/II Portland cement, silica fume cement and cement kiln dust. Glob Nest J. 2009;11:267-82. DOI: 10.30955/gnj.000624
  • [36] Liu J, Wu D, Tan X, Yu P, Xu L. Review of the interactions between conventional cementitious materials and heavy metal ions in stabilization/solidification processing. Materials. 2023;16(9):3444. DOI: 10.3390/ma16093444.
  • [37] Wang H, Zhu Z, Pu S, Song W. Solidification/stabilization of Pb2+ and Cd2+ contaminated soil using fly ash and GGBS based geopolymer. Arabian J Sci Eng. 2022;47(4):4385-400. DOI: 10.1007/s13369-021-06109-1.
  • [38] Wang Y, Han F, Mu J. Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers. Construct Build Mater. 2018;160:818-27. DOI: 10.1016/j.conbuildmat.2017.12.006.
  • [39] Liu J, Zha F, Xu L, Kang B, Yang C, Zhang W, et al. Zinc leachability in contaminated soil stabilized/solidified by cement-soda residue under freeze-thaw cycles. Appl Clay Sci. 2020;186:105474. DOI: 10.1016/j.clay.2020.105474.
  • [40] Qiu Y, Cao S, Chen F, You S, Zhang Y. Synthesis of calcium silicate as paper filler with desirable particle size from desilication solution of silicon-containing waste residues. Powder Technol. 2020;368:137-48. DOI: 10.1016/j.powtec.2020.04.042.
  • [41] Zając G, Szyszlak-Bargłowicz J, Gołębiowski W, Szczepanik M. Chemical characteristics of biomass ashes. Energies. 2018;11(11):2885. DOI: 10.3390/en11112885.
  • [42] Baquerizo LG, Matschei T, Scrivener KL, Saeidpour M, Wadsö L. Hydration states of AFm cement phases. Cement Concrete Res. 2015;73:143-57. DOI: 10.1016/j.cemconres.2015.02.011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7b0c228-17cc-43a1-9289-ea4af1b81c9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.