PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neural network modelling of non-prosperity of Slovak companies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Early identification of potential financial problems is among important companies’ risk management tasks. This paper aims to propose individual and ensemble models based on various types of neural networks. The created models are evaluated based on several quantitative metrics, and the best-proposed models predict the impending financial problems of Slovak companies a year in advance. The precise analysis and cleaning of real data from the financial statements of real Slovak companies result in a data set consisting of the values of nine potential predictors of almost 19 thousand companies. Individual and ensemble models based on MLP and RBF-type neural networks and the Kohonen map are created on the training sample. On the other hand, several metrics quantify the predictive ability of the created models on the test sample. Ensemble models achieved better predictive ability compared to individual models. MLP networks achieved the highest overall accuracy of almost 89 %. However, the non-prosperity of Slovak companies was best identified by RBF networks created by the boosting and bagging technique. The sensitivity of these models is about 87 %. The study found that models based on neural networks can be successfully designed and used to predict financial distress in the Slovak economy.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
Bibliografia
  • Ahmadpour Kasgari, A., Divsalar, M., Javid, M. R., & Ebrahimian, S. J. (2013). Prediction of bankruptcy Iranian corporations through artificial neural network and Probit-based analyses. Neural Computing and Applications, 23(3), 927-936. doi: 10.1007/s00521-012- 1017-z
  • Alamsyah, A., Kristanti, N., & Kristanti, F. T. (2021). Early warning model for financial distress using Artificial Neural Network. IOP Conference Series: Materials Science and Engineering, 1098, 052103. doi: 10.1088/1757-899X/1098/5/052103
  • Ayer, T., Chhatwal, J., Alagoz, O., Kahn, C. E., Woods, R. W., & Burnside, E. S. (2010). Comparison of Logistic Regression and Artificial Neural Network Models in Breast Cancer Risk Estimation. RadioGraphics, 30(1), 13-22. doi: 10.1148/rg.301095057
  • Azadnia, A. H., Siahi, A., & Motameni, M. (2017). An Adaptive Fuzzy Neural Network Model for Bankruptcy Prediction of Listed Companies on the Tehran Stock Exchange. International Journal of Engineering, C: Aspects, 30(12), 1879-1884. doi: 10.5829/ ije.2017.30.12c.09
  • Bagheri, M., Valipour, M., & Amin, V. (2012). The Bankruptcy Prediction in Tehran Share Holding Using Neural Network and Its Comparison with Logistic Regression. Journal of Mathematics and Computer Science, 5(3), 219-228. doi: 10.22436/jmcs.05.03.10
  • Balina, R., Idasz-Balina, M., & Achsani, N. A. (2021). Predicting Insolvency of the Construction Companies in the Creditworthiness Assessment Process – Empirical Evidence from Poland. Journal of Risk and Financial Management, 14(10), Article 10. doi: 10.3390/ jrfm14100453
  • Becerra-Vicario, R., Alaminos, D., Aranda, E., & Fernández-Gámez, M. A. (2020). Deep Recurrent Convolutional Neural Network for Bankruptcy Prediction: A Case of the Restaurant Industry. Sustainability, 12(12), Article 12. doi: 10.3390/su12125180
  • Bielikova, T., Cut, S., & Uradnicek, V. (2014). The influence of the definition of risky company on financial situation diagnostic models in Slovak dynamic economic environment. In M. Culik (Ed.), Managing and Modelling of Financial Risks: 7th International Scientific Conference, Pts I-III (pp. 35-38). VSB-Technical University in Ostrava.
  • Callejón, A. M., Casado, A. M., Fernández, M. A., & Peláez, J. I. (2013). A System of Insolvency Prediction for industrial companies using a financial alternative model with neural networks. International Journal of Computational Intelligence Systems, 6(1), 29-37. doi: 10.1080/18756891.2013.754167
  • Chen, W.-S., & Du, Y.-K. (2009). Using neural networks and data mining techniques for the financial distress prediction model. Expert Systems with Applications, 36(2), 4075-4086. doi: 10.1016/j.eswa.2008.03.020
  • Constantin, D., & Clipici, E. (2017). A New Model for Estimating the Risk of Bankruptcy of the Insurance Companies Based on the Artificial Neural Networks. 17th International Multidisciplinary Scientific GeoConference SGEM 2017, 21, 85-94. doi: 10.5593/sgem2017/21/S07.012
  • Dube, F., Nzimande, N., & Muzindutsi, P.-F. (2021). Application of artificial neural networks in predicting financial distress in the JSE financial services and manufacturing companies. Journal of Sustainable Finance & Investment, Early Access. doi: 10.1080/20430795.2021.2017257
  • Dzikevičius, A., & Stabužytė, N. (2012). Forecasting OMX Vilnius stock index – a neural network approach. Business: Theory and Practice, 13(4), 324-332. doi: 10.3846/btp.2012.34
  • Eriki, P. O., & Udegbunam, R. (2013). Predicting corporate distress in the Nigerian stock market: Neural network versus multiple discriminant analysis. African Journal of Business Management, 7(38), 3856-3863. doi: 10.5897/AJBM09.152
  • Fathi, M. R., Rahimi, H., & Minouei, M. (2022). Predicting financial distress using the worst-practice-frontier data envelopment analysis model and artificial neural network. Nankai Business Review International (in print). doi: 10.1108/NBRI-01-2022-0005
  • Geng, R., Bose, I., & Chen, X. (2015). Prediction of financial distress: An empirical study of listed Chinese com¬panies using data mining. European Journal of Operational Research, 241(1), 236-247. doi: 10.1016/j.ejor.2014.08.016
  • Gregova, E., Valaskova, K., Adamko, P., Tumpach, M., & Jaros, J. (2020). Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods. Sustainability, 12(10), Article 10. doi: 10.3390/su12103954
  • Horak, J., Vrbka, J., & Suler, P. (2020). Support Vector Ma¬chine Methods and Artificial Neural Networks Used for the Development of Bankruptcy Prediction Mod¬els and their Comparison. Journal of Risk and Financial Management, 13(3), Article 3. doi: 10.3390/ jrfm13030060
  • Horváthová, J., Mokrišová, M., & Petruška, I. (2021). Selected Methods of Predicting Financial Health of Companies: Neural Networks Versus Discriminant Analysis. Information, 12(12), Article 12. doi: 10.3390/info12120505
  • Korol, T. (2019). Dynamic Bankruptcy Prediction Models for European Enterprises. Journal of Risk and Financial Management, 12(4), Article 4. doi: 10.3390/ jrfm12040185
  • Korol, T. (2020). Long-term risk class migrations of non-bankrupt and bankrupt enterprises. Journal of Business Economics and Management, 21(3), 3. doi: 10.3846/jbem.2020.12224
  • Kristianto, H., & Rikumahu, B. (2019). A Cross Model Telco Industry Financial Distress Prediction in Indonesia: Multiple Discriminant Analysis, Logit and Artificial Neural Network. 2019 7th International Conference on Information and Communication Technology (ICoICT), 1-5. doi: 10.1109/ICoICT.2019.8835198
  • Lee, S., & Choi, W. S. (2013). A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis. Expert Systems with Applications, 40(8), 2941-2946. doi: 10.1016/j.eswa.2012.12.009
  • Lin, T.-H. (2009). A cross model study of corporate financial distress prediction in Taiwan: Multiple dis¬criminant analysis, logit, probit and neural networks models. Neurocomputing, 72(16-18), 3507-3516. doi: 10.1016/j.neucom.2009.02.018
  • Mateos-Ronco, A., & Mas, A. L. (2011). Developing a business failure prediction model for cooperatives: Results of an empirical study in Spain. African Journal of Business Management, 5(26), 10565-10576. doi: 10.5897/AJBM11.1415
  • Mihalovič, M. (2016). Performance Comparison of Multiple Discriminant Analysis and Logit Models in Bankruptcy Prediction. Economics & Sociology, 9(4), 101-118. doi: 10.14254/2071-789X.2016/9-4/6
  • Mihalovič, M. (2018). Applicability of Scoring Models in Firms’ Default Prediction. The Case of Slovakia. Politická Ekonomie, 66(6), 689-708. doi: 10.18267/j.polek.1226
  • Mokhatab Rafiei, F., Manzari, S. M., & Bostanian, S. (2011). Financial health prediction models using artificial neural networks, genetic algorithm and multivariate discriminant analysis: Iranian evidence. Expert Systems with Applications, 38(8), 10210-10217. doi: 10.1016/j.eswa.2011.02.082
  • Pakšiová, R., & Oriskóová, D. (2020). Capital Maintenance Evolution using Outputs from Accounting System. Scientific Annals of Economics and Business, 67(3), 3. doi: 10.47743/saeb-2020-0020
  • Papana, A., & Spyridou, A. (2020). Bankruptcy Prediction: The Case of the Greek Market. Forecasting, 2(4), Article 4. doi: 10.3390/forecast2040027
  • Perez, M. (2006). Artificial neural networks and bankruptcy forecasting: A state of the art. Neural Computing & Applications, 15(2), 154-163. doi: 10.1007/s00521-005-0022-x
  • Prusak, B. (2018). Review of Research into Enterprise Bankruptcy Prediction in Selected Central and Eastern European Countries. International Journal of Financial Studies, 6(3), 3. doi: 10.3390/ijfs6030060
  • Ravi Kumar, P., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review. European Journal of Operational Research, 180(1), 1-28. doi: 10.1016/ j.ejor.2006.08.043
  • Shin, K.-S., & Lee, Y.-J. (2002). A genetic algorithm applica¬tion in bankruptcy prediction modeling. Expert Systems with Applications, 23(3), 321-328. doi: 10.1016/S0957-4174(02)00051-9
  • Sun, X., & Lei, Y. (2021). Research on financial early warning of mining listed companies based on BP neural network model. Resources Policy, 73, 102223. doi: 10.1016/j.resourpol.2021.102223
  • Tumpach, M., Surovicova, A., Juhaszova, Z., Marci, A., & Kubascikova, Z. (2020). Prediction of the Bankruptcy of Slovak Companies Using Neural Networks with SMOTE. Ekonomický Časopis (Journal of Economics), 68(10), 1021-1039. doi: 10.31577/ekoncas.2020.10.03
  • Vochozka, M. (2017). Formation of Complex Company Evaluation Method Through Neural Networks on the Example of Construction Companies’ Collection. AD ALTA: Journal Of Interdisciplinary Research, 7(2), 232-239.
  • Vochozka, M. (2018). Analysis of enterprises operating in the construction industry based on Kohonen networks. The 12th International Days of Statistics and Economics Conference Proceedings, 1874-1883.
  • Zacharis, N. Z. (2016). Predicting Student Academic Performance in Blended Learning Using Artificial Neural Networks. International Journal of Artificial Intelligence and Applications, 7(5), 1879-1884. doi: 10.5121/IJAIA.2016.7502
  • Zhang, G., Y. Hu, M., Eddy Patuwo, B., & C. Indro, D. (1999). Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. European Journal of Operational Research, 116(1), 16-32. doi: 10.1016/S0377-2217(98)00051-4
  • Zhou, L., Lai, K. K., & Yen, J. (2010). Bankruptcy Prediction Incorporating Macroeconomic Variables Using Neural Network. 2010 International Conference on Technologies and Applications of Artificial Intelligence, 80-85. doi: 10.1109/TAAI.2010.24
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7af22e4-d4a6-4a22-ab21-2b771eab8830
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.