Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Abrasive blasting is one of the methods of surface working before hot-dip zinc-coating. It allows not only to remove products of corrosion from the surface, but it also affects the quality of the zinc coating applied later, thereby affecting wettability of surface being zinc-coated. The surface working can be done with different types of abrasive material. The paper presents an effect of the method of abrasive blasting on wetting the surface of steel sheets by liquid zinc. Steels sheets following blasting with Al2O3 of different granularity and shot peening were examined. The worst wetting was recorded for a sample following shot peening - the results are below those for the reference test conducted for a sample not previously subjected to any treatment. Samples following abrasive blasting have similar parameters, regardless of the size of grain used for the treatment.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1069--1074
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr., wzory
Twórcy
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924 Lodz, Poland
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924 Lodz, Poland
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924 Lodz, Poland
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924 Lodz, Poland
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924 Lodz, Poland
autor
- Lodz University of Technology, Institute of Applied Computer Science, 18/22 Stefanowskiego Str., 90-924 Lodz, Poland
autor
- Lodz University of Technology, Institute of Applied Computer Science, 18/22 Stefanowskiego Str., 90-924 Lodz, Poland
autor
- Lodz University of Technology, Institute of Applied Computer Science, 18/22 Stefanowskiego Str., 90-924 Lodz, Poland
Bibliografia
- [1] H. Kania, P. Liberski, P. Podolski, Corrosion resistance of the zinc coatings obtained in modified zinc baths, Physico Chemical Mechanics of Materials 5(2), 684-690 (2006).
- [2] H. Kania, P. Liberski, P. Podolski, A. Gierek, J. Mendala, Corrosion resistance of zinc coatings obtained in high-temperature baths, Materials Science 39(5), 652-657 (2003).
- [3] F. C. Porter, Zinc Handbook, properties processing and use in design Marcel Dekker, New York (1991).
- [4] A. R. Marder, The metallurgy of zinc-coated steel. Progress in Materials Science 45, 191-271 (2000).
- [5] J. Perlin, J. Hofman, V. Leroy, The influence of silicon and phosphorus on the commercial galvanization of mild steel, METALL 35(9), 870-873 (1981).
- [6] M. Yasuhiko, Effect of C and P addition on the corrosion of steel by molten zinc, Corros. Eng. 24(4), 177-182 (1975).
- [7] D. Kopyciński, E. Guzik, The kinetics of zinc coating growth on hyper-sandelin steels and ductile cast iron, Archives of Foundry Engineering 7(4), 105-110 (2007).
- [8] P. Liberski, Anticorrosion dip coating. WPŚ Gliwice (2013) (in Polish).
- [9] M. Huckshold, Improving design guidance to avoid cracking of galvanized structural steelwork. Session: Steel and Galvanizing. Paper 3, 1-6 Proceedings 22th International Galvanizing Conference. EGGA, Madrid (2009).
- [10] H. Kania, P. Liberski, P. Podolski, A. Gierek, Some aspects of improvements in hot-dip galvanizing technology, Materials Engineering 2, 775-782 (2004) (in Polish).
- [11] V. Di Cocco, F. Iacoviello, S. Natali, Damaging micromechanisms in hot-dip galvanizing Zn based coatings, Theoretical and Applied Fracture Mechanics 70, 91-98 (2014).
- [12] J. Wesołowski, W. Głuchowski, Universal and saving zinc coating obtained in WEGAL bath, Conference papers, X Galvanizing Symposium, Ustroń (2003) 61-71 (in Polish).
- [13] Ph. Beguin, M. Bosschaerts, D. Dhaussy, R. Pankert, M. Gilles, Galveco a solution for galvanizing reactive steel, Intergalva, Berlin (2000).
- [14] R. Pankert, D. Dhaussy, Ph. Beguin, (Umicore Zinc Alloys & Chemicals) Mk. Gilles (Umicore Resaearch, Development Innovation) GALVECO - three years of presence on the market (2003).
- [15] J. Andziak, The technology of preparing the steel surface for protective coating used in chemical industry, Anticorrosion Protection 7, 172-175 (1983) (in Polish).
- [16] J. Andziak, Theory and practice of abrasive blasting in preparing the base for protective coatings, Anticorrosion Protection 6, 148-152 (1996) (in Polish).
- [17] J. Andziak, The influence of the use of non-metallic abrasives on the quality of abrasive blast cleaned of metal base, Anticorrosion Protection 10, 291-296 (1997) (in Polish).
- [18] Z. Gawroński, A. Malasiński, J. Sawicki, Elimination of galvanic copper plating process used in hardening of conventionally carburized gear wheels, International Journal of Automotive Technology 11(1), 127-131 (2010).
- [19] W. Szymański, K. Pietnicki, L. Klimek, Assessing the surface of the prosthetic components after the abrasive blasting technology, Monograph. Biomaterials mechanics and scientific experiment in dentistry, edited by J. Kasperski, G. Chladek, PTIM, Zabrze 122-148 (2011) (in Polish).
- [20] M. Płocińska, T. Płociński, J. Szawłowski, The morphology of zinc coating obtained on Armco iron with various plastic deformations, Materials Engineering 6, 784-787 (2008) (in Polish).
- [21] D. Kopyciński, The shaping of zinc coating on surface steels and ductile iron casting, Archives of Foundry Engineering 10(1), 463-469 (2010).
- [22] P. Liberski, A. Tatarek, B. Mendala, Investigation of the Initial Stage of Hot Dip Zinc Coatings on Iron Alloys with Various Silicon Contents, Solid State Phenomena 212, 121-126 (2014).
- [23] P. Liberski, A. Tatarek, B. Mendala, Investigation of the initial stage of hot dip zinc coatings on iron alloys with various silicon contents, Proc. of XXI Conference on Technologies and Properties of Modern Utility Materials (TPMUM 2013), Ed. TTP, Solid State Phenomena 212, 121-126 (2014).
- [24] A. M. Marder, The metallurgy of zinc-coated steel, Progress in Materials Science 45, 191-271 (2000).
- [25] W. Missol, The energy phase separation in metals, WŚK (1973) (in Polish).
- [26] D. Sankowski, M. Bąkała, A. Albrecht, T. Koszmider, R. Wojciechowski, A. Rylski, Methodology for automatic measurement of dynamic surface properties - solderability and wettability, Materials Engineering 6, 1064-1067 (2008).
- [27] Z. Nitkiewicz, M. Bąkała, R. Wojciechowski, A. Albrecht, A. Rylski, The solderability of solder L-AG5P - the rating of selected parameters, Materials Engineering 6, 1068-1071 (2008) (in Polish).
- [28] M. Bąkała, R. Wojciechowski, D. Sankowski, A. Rylski, The wetting dynamics measurement system to research the properties and applications of modern materials, Microtherm 2015.
- [29] W. L. Falke, A. E. Schwaneke, R. W. Nash, Surface Tension of Zinc: The Positive Temperature Cefficient, Metallurgical Transactions B. 8B, 301-303 (1977).
Uwagi
EN
This study was conducted within the project GEKON1/05/213992/11/2014 project, co-financed by NCBiR and NFOŚiGW
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7ae7267-dff6-4ea5-99cf-dd8734e2a564