PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The implementation of a tier-captive SBS/RS solution: a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of this research is to provide a practical demonstration of the tier-captive SBS/RS system's step-by-step implementation procedure. This includes making the necessary modifications to the warehouse's operating system, a comparison of investment efficiency, and an examination of the specific advantages and disadvantages of the implemented system. Design/methodology/approach: The article follows case study method, focusing on one deliberate chosen enterprise, utilizing mixed methods research: two in-depth interviews with warehouse managers, WMS (Warehouse Management System) and Kisoft data analysis. Findings: The distribution company found that tier-captive SBS/RS system solutions in warehouses can improve efficiency, reduce employee numbers, and increase speed. The automated warehoused equipped with tier-captive SBS/RS system achieved higher picking efficiency and a shorter picking time. However, implementing these solutions requires overcoming financial barriers, proper training, and addressing human errors. Despite these challenges, the company continues to update IT systems, inspect parts, and replace parts. Despite these benefits, personnel will never be completely replaced by these systems, as they will still be responsible for controlling processes, making changes, and making changes where errors occur. Research limitations: Case studies by definition may lead to an external validity; the chosen sample may hardly allow for necessary generalization; triangulation methods allow for mistakes such as biased information, cause errors due to inappropriate question construction, inaccuracies, or attempts to present the company from a better perspective or maintain anonymity. Originality/value: The use of case study method provides unique perspective into the well- researched field of literature and detailed insight into a highly secure field of innovation deployment into the warehouse system.
Słowa kluczowe
Rocznik
Tom
Strony
423--445
Opis fizyczny
Bibliogr. 42 poz.
Bibliografia
  • 1. Bahurdin, M.M., Othman, J., Dir, T.M.A.T., Othman, J., Dir, T.M.A.T. (2020). Developments shuttle-based storage and retrieval system current and future. International Journal of Advanced Science and Technology, 29(8), pp. 4430-4437.
  • 2. Carlo, H.J., Vis, I.F. (2012). Sequencing dynamic storage systems with multiple lifts and shuttles. International Journal of Production Economics, 140(2), pp. 844-853.
  • 3. Casella, G., Volpi, A., Montanari, R., Tebaldi, L., Bottani, E. (2023). Trends in order picking: a 2007-2022 review of the literature. Production Manufacturing Research, 11(1), 2191115.
  • 4. Eder, M. (2019). An analytical approach for a performance calculation of shuttle-based storage and retrieval systems. Production Manufacturing Research, 7(1), 255-270.
  • 5. Ekren, B. (2017). Graph-based solution for performance evaluation of shuttle-based storage and retrieval system. International Journal of Production Research, 55(21), pp. 6516-6526.
  • 6. Ekren, B.Y. (2020a). A simulation-based experimental design for SBS/RS warehouse design by considering energy related performance metrics. Simulation Modelling Practice and Theory, 98, 101991.
  • 7. Ekren, B.Y., Akpunar, A. (2021). An open queuing network-based tool for performance estimations in a shuttle-based storage and retrieval system. Applied Mathematical Modelling, 89, pp. 1678-1695.
  • 8. Ekren, B.Y., Akpunar, A., Sari, Z., Lerher, T. (2018). A tool for time, variance and energy related performance estimations in a shuttle-based storage and retrieval system. Applied Mathematical Modelling, 63, pp. 109-127.
  • 9. Ekren, B.Y., Arslan, B. (2024). A reinforcement learning approach for transaction scheduling in a shuttle- based storage and retrieval system. International Transactions in Operational Research, 31(1), pp. 274-295.
  • 10. Ekren, B.Y., Heragu, S.S. (2011). Simulation based performance analysis of an autonomous vehicle storage and retrieval system. Simulation Modelling Practice and Theory, 19(7), pp. 1640-1650.
  • 11. Ekren, B.Y., Heragu, S.S. (2012). Performance comparison of two material handling systems: AVS/RS and CBAS/RS. International Journal of Production Research, 50(15), pp. 4061-4074.
  • 12. Ekren, B.Y., Sari, Z., Lerher, T. (2015). Warehouse design under class-based storage policy of shuttle-based storage and retrieval system. IFAC-PapersOnLine, 48(3), pp. 1152-1154.
  • 13. Epp, M., Wiedemann, S., Furmans, K. (2017). A discrete-time queueing network approach to performance evaluation of autonomous vehicle storage and retrieval systems. International Journal of Production Research, 55(4), pp. 960-978.
  • 14. Fukunari, M., Malmborg, C.J. (2008). An efficient cycle time model for autonomous vehicle storage and retrieval systems. International Journal of Production Research, 46(12), pp. 3167-3184.
  • 15. Ha, Y., Chae, J. (2018). Free balancing for a shuttle-based storage and retrieval system. Simulation Modelling Practice and Theory, 82, pp. 12-31.
  • 16. Kauf, S. (2016). Logistyczna obsługa klienta. In: S. Kauf, E. Płaczek, A. Sadowski, J. Szołtysek, S. Twaróg (Eds.), Vademecum logistyki (pp. 56-76). Difin.
  • 17. Kazemi, M., Asef-vaziri, A., Shojaei, T. (2019). Concurrent optimization of shared location assignment and storage/retrieval scheduling in multi-shuttle automated storage and retrieval systems. IFAC-PapersOnLine, 52(13), pp. 2531-2536.
  • 18. Knapp - OSR Shuttle Evo Picking station. Retrieved from: https://www.knapp.com/en/ solutions/technologies/modern-work-stations-for-satisfied-employees/, 12.04.2024.
  • 19. Knapp - OSR Shuttle Evo. Retrieved from: https://www.knapp.com/en/evo/, 12.04.2024.
  • 20. Kuo, P.H., Krishnamurthy, A., Malmborg, C.J. (2007). Design models for unit load storage and retrieval systems using autonomous vehicle technology and resource conserving storage and dwell point policies. Applied Mathematical Modelling, 31(10), pp. 2332-2346.
  • 21. Lee, S.G., De Souza, R., Ong, E.K. (1996). Simulation modelling of a narrow aisle automated storage and retrieval system (AS/RS) serviced by rail-guided vehicles. Computers in Industry, 30(3), pp. 241-253.
  • 22. Lerher, T. (2015). Travel time model for double-deep shuttle-based storage and retrieval systems. International Journal of Production Research, 54(9), pp. 2519-2540.
  • 23. Lerher, T. (2018). Shuttle-Based Storage and Retrieval Systems with Robotic Order-Picking Shuttle Carrier. 15th IMHRC Proceedings. Savannah, Georgia. USA, 7.
  • 24. Lerher, T., Ekren, B.Y., Dukic, G., Rosi, B. (2015a). Travel time model for shuttle-based storage and retrieval systems. The International Journal of Advanced Manufacturing Technology, 78, pp. 1705-1725.
  • 25. Lerher, T., Ekren, B.Y., Sari, Z., Rosi, B. (2016). Method for evaluating the throughput performance of shuttle based storage and retrieval systems. Tehnicki vjesnik [Technical Gazette], 23(3), pp. 715-723.
  • 26. Lerher, T., Yetkin Ekren, B., Sari, Z., Rosi, B. (2015b). Simulation analysis of shuttle based storage and retrieval systems. Internatıonal Journal of Sımulatıon Modellıng, 14(1), pp. 48-59.
  • 27. Linn, R.J., Wysk, R.A. (1990). An expert system framework for automated storage and retrieval system control. Computers industrial engineering, 18(1), pp. 37-48.
  • 28. Liu, Z., Wang, Y., Jin, M., Wu, H., Dong, W. (2021). Energy consumption model for shuttle-based storage and retrieval systems. Journal of Cleaner Production, 282, 124480.
  • 29. Malmborg, C.J. (1996). An integrated storage system evaluation model. Applied Mathematical Modelling, 20(5), pp. 359-370.
  • 30. Manzini, R., Gamberi, M., Regattieri, A. (2006). Design and control of an AS/RS. The International Journal of Advanced Manufacturing Technology, 28, pp. 766-774.
  • 31. Marchet, G., Melacini, M., Perotti, S., Tappia, E. (2012). Analytical model to estimate performances of autonomous vehicle storage and retrieval systems for product totes. International Journal of Production Research, 50(24), pp. 7134-7148.
  • 32. Meng, T., Liu, X. F. (2015). The AVS/RS modeling and path planning. Journal of Applied Science and Engineering, 18(3), pp. 245-250.
  • 33. Meyers, F.E., Stephens, M.P. (2013). Manufacturing facilities design and material handling. New Jersey: Purdue University Press.
  • 34. Tappia, E., Roy, D., De Koster, R., Melacini, M. (2017). Modeling, analysis, and design insights for shuttle-based compact storage systems. Transportation Science, 51(1), pp. 269- 295.
  • 35. Van Den Berg, J.P., Gademann, A.J.R.M. (2000). Simulation study of an automated storage/retrieval system. International Journal of Production Research, 38(6), pp. 1339- 1356.
  • 36. Vasili, M.R., Tang, Sai Hong, Vasili, Mehdi (2012). Automated storage and retrieval systems: a review on travel time models and control policies. In: R. Manzini (Ed.), Warehousing in the Global Supply Chain: Advanced Models, Tools and Applications for Storage Systems (pp. 159-209). New York, NY: Springer.
  • 37. Wang, Y., Mou, S., Wu, Y. (2015). Task scheduling for multi-tier shuttle warehousing systems. International Journal of Production Research, 53(19), pp. 5884-5895.
  • 38. Wauters, T., Villa, F., Christiaens, J., Alvarez-Valdes, R., Berghe, G.V. (2016). A decomposition approach to dual shuttle automated storage and retrieval systems. Computers Industrial Engineering, 101, pp. 325-337.
  • 39. Yetkin Ekren, B. (2017). Graph-based solution for performance evaluation of shuttle-based storage and retrieval system. International Journal of Production Research, 55(21), pp. 6516-6526.
  • 40. Yin R.K. (2003a). Case Study Research. Design and Methods. Thousand Oaks: Sage Publications.
  • 41. Yin R.K. (2003b). Applications of Case Study Research. Thousand Oaks: Sage Publications.
  • 42. Zou, B., Xu, X., De Koster, R. (2016). Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems. European Journal of Operational Research, 254(1), pp. 51-67.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7aaf96c-5c21-4354-bdf9-d83af7e1d404
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.